期刊文献+

木质素胺的合成及絮凝脱色作用 被引量:2

Flocculated Decolorization Properties and Synthesis of Ligninamine
下载PDF
导出
摘要 以造纸黑液中提取的木质素为原料,通过Mannich反应将木质素胺化改性合成木质素胺;以氮元素含量来确定木质素的改性率。通过黏度和表面张力的测定对木质素胺的物理性能进行分析,并用FT-IR、TG-DSC、UV等对木质素和木质素胺的结构进行了探讨。另外对样品进行了絮凝脱色试验,研究了染料初始浓度、木质素用量对品红脱色效果的影响。结果表明,与木质素相比,木质素胺的黏度增大,表面张力降低,表面活性增强,相对分子质量增加,分解温度提高,絮凝脱色效果也明显优于木质素;当品红初始浓度为12mg/L,木质素胺浓度为0.5g/L,脱色时间100min时,脱色率可达93%以上。 Cationic lignin amines were obtained by the Mannich reaction between hexanediamine and lignin from black liquor. The amination modification effect of the lignins was determined by nitrogen content. Physical properties of ligninamine were analyzed by measuring viscosity and surface tension. The structure of lignin and ligninamine was discussed through FT-IR, thermal analysis technique (TG-DSC) and UV. The test of flocculated decolorization for the modified lignin samples was carried out, and initial dye concentration and effect of lignin content on magenta decolorization were studied. The results show that ligninamine has the larger viscosity, lower surface tension, greater molecular weight, higher decomposition temperature and better surface activity than the lignin. The flocculation capacity and decolorization efficiency of ligninamine is obviously better than those of lignin. The decolorization rate is above 93% under the optimal conditions of initial concentration of magenta 12mg/L, ligninamine concentration 0.5g/L,adsorption time 100 min.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2013年第10期5-8,共4页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(21075054) 南京大学生命分析化学国家重点实验室开放基金资助项目(KLACLS1010) 江苏省教育厅项目(12KJD610003) 江苏省自然科学基金资助项目(BK20131249)
关键词 木质素 MANNICH反应 木质素胺 絮凝剂 脱色 lignin Mannich reaction ligninamine flocculant decolorization
  • 相关文献

参考文献9

  • 1吕秋丰.聚吡咯纳米粒子及聚吡咯-木质素磺酸空心球的制备[J].高分子材料科学与工程,2011,27(5):170-173. 被引量:2
  • 2Fang R, Cheng X S, Xu X R. Synthesis of lignin-base cationic floceulant and its application in removing anionic azo-dyes from simulated wastewater [J ]. Bioresource TechnoI. , 2010, 101 ( 19 ) : 7323-7329.
  • 3Hatakeyama H, Hatakeyama T. Lignin structure, properties, and applications [J]. Adv. Polym. Sci., 2010, 232: 1-63.
  • 4Chandra R, Raj A, Purohit H J, et al. Characterisation and optimisation of three potential aerobic bacterial strains for kraft lignin degradation from pulp paper waste [J].Chemosphere, 2007, 67 (4) : 839-846.
  • 5da Silva L G, Ruggiero R, Gontijo P D, et al. Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin [J]. Chem. Eng. J., 2011, 168(2): 620- 628.
  • 6Qu Y, Tian Y, Zou B, et al. A novel mesoporous lignin /silica hybrid from rice husk produced by a sol-gel method [J ]. Bioresource Teehnol. , 2010, 101(21) : 8402-8405.
  • 7Mao J Z, Zhang L M, Xu F. Fractional and structural characterization of alkaline lignins from carex meyeriana kunth [J ]. Cellulose. Chem. Technol. , 2012, 46(3-4): 193-205.
  • 8Amen-Chen C, Pakdel H, Roy C. Production of monomeric phenols by thermochemieal conversion of biomass: A review [j ]. Bioresource Technol., 2001, 79(3): 277-279.
  • 9Nakamura T, Kawamoto H, Saka S. Pyrolysis behavior of Japanese cedar wood lignin studied with variousmodel dimmers [J ]. J. Anal. Appl. Pyrol., 2008, 81(2):173-182.

二级参考文献9

  • 1Bai M Y, Cheng Y J, Wieldine S A, et al. Colloidal hollow spheres of conducting polymers with smooth surface and uniform, controllable sizes [J]. Small, 2009, 5: 1747-1752.
  • 2Roy S, Fortier J M, Nagarajan R, et al. Biomimetic synthesis of a water soluble conducting molecular complex of polyaniline and lignosulfonate [J]. Biomacmmolecules, 2002, 3. 937-941.
  • 3Taylor K K, Cole C V, Soora R, et al. The use of Lignosulfonic acid in the synthesis of water-dispersible polyaniline [ J ]. J. Appl. Polym. Sci., 2008, 108: 1496-1500.
  • 4Shao L, Qiu J H, Feng H X, et al. Structural investigation of lignosulfonate doped polyaniline []]. Synth. Met., 2009, 159: 1761-1766.
  • 5Yang C, Liu P. Water-dispersed conductive polypyrrolea doped with lignosulfonate and the weak temperature dependence of electrical conductivity [J]. Ind. Eng. Chem. Res., 2009, 48: 9498-9503.
  • 6Zhang X T, Zhang J, Song W H, et al. Controllable synthesis of conducting polypyrrole nanostructures [J]. J. Phys. Chem. B, 2006, 110: 1158-1165.
  • 7Elyashevich G K, Rosova E Y, Andreeva D V, et al. New composite systems on the base of polyethylene porous films covered by polypyrrole and polyacrylic acid [J]. J. Appl. Polym. Sci.,2005, 97: 1410-1417.
  • 8Lu G, Li C, Shi G. Polypyrrole micro-and nanowires synthesized by eleetroehemleal polymerization of pyrrole in the aqueous solutions of pyrenesulfonie acid [J]. Polymer, 2006, 47: 1778-1784.
  • 9吕秋丰,翁志勇.聚吡咯纳米颗粒的静态法合成及表征[J].高分子学报,2009,19(6):513-519. 被引量:12

共引文献1

同被引文献15

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部