期刊文献+

基于簇内不平衡度量的粗糙K-means聚类算法 被引量:12

Rough K-means clustering based on unbalanced degree of cluster
原文传递
导出
摘要 粗糙K-means聚类算法是一种有效的处理聚类边界模糊问题的算法,但大多数算法对簇的下近似集和边界中的对象使用统一的权值,忽略了簇内对象之间的差异性.针对这一问题提出一种新的改进算法,通过对簇内的每个对象加入簇内不平衡度量,以区分不同对象对簇的贡献程度,使得聚类结果簇内更紧凑、簇间更疏远.不同数据集的仿真实验结果表明,所提出算法可以有效提高聚类结果的精度. Rough K-means clustering is a valid algorithm to process the inseparability of border of clusters. But to most algorithms, weights of objects in the lower approximate set or the upper approximate set are all the same without paying attention to the diversity in clusters. Therefore, a new algorithm is proposed. The algorithm can make the cluster has a more compact "center, and the borders are separated each other with the unbalanced degree of cluster which means the contribution of an object to the cluster, The simulation analysis shows that this algorithm can improve the precision of the clustering results effectively.
出处 《控制与决策》 EI CSCD 北大核心 2013年第10期1479-1484,共6页 Control and Decision
基金 国家自然科学基金项目(61105082 61073114) 南京邮电大学"攀登计划"项目(NY212093) 江苏省教育厅高校自然科学基金基础研究项目(11KJB120001)
关键词 簇内不平衡度量 粗糙集 粗糙K-means聚类 unbalanced degree of cluster rough set rough K-means clustering
  • 相关文献

参考文献13

  • 1Han Jia-wei, Kamber Miche-line. Data mining, concepts and techniques[M]. San Mateo: Morgan Kaufmann Publishers. 2001: 15-22.
  • 2Lingras P, West C. Interval set clustering of web users with rough k-means[J]. J of Intelligent Information Systems, 2004, 23(1): 5-16.
  • 3Lingras Pawan, Yan Rui, West Chad. Comparison of conventional and rough K-means clustering[C]. The 9th Int Conf on RSFDGrC. Choneoinm 2003: 130-137.
  • 4Peters Georg. Outliers in rough k-means clustering[C]. The 1st Int Conf on PReMI. Kolkata, 2005: 702-707.
  • 5Peters Georg. Some refinements of rough k-means clustering[J]. Pattern Recognition, 2006, 39(8): 1481- 1491.
  • 6Sushmita Mitra, Haider Banka, Witold Pedrycz. Rough fuzzy collaborative clustering[J]. IEEE Trans on Systems,Man and Cybernetics, Part B: Cybernetics, 2006, 36(4): 795-805.
  • 7Hu Qing-hua, Yu Da-ren. An improved clustering algorithm for information granulation[C]. The 2nd Int Conf on FSKD. Changsha, 2005: 494-504.
  • 8Sushmita Mitra, Haider Banka. Application of rough sets in pattern recognition[J]. Trans on Rough Sets, 2007, 7(1): 151-169.
  • 9谢娟英,张琰,谢维信,高新波.一种新的密度加权粗糙K-均值聚类算法[J].山东大学学报(理学版),2010,45(7):1-6. 被引量:11
  • 10刘兵,夏士雄,周勇,韩旭东.基于样本加权的可能性模糊聚类算法[J].电子学报,2012,40(2):371-375. 被引量:21

二级参考文献29

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2王丹,吴孟达.粗糙模糊C-均值算法及其在图像聚类中的应用[J].国防科技大学学报,2007,29(2):76-80. 被引量:6
  • 3PAWLAK Z. Rough sets[J].International Journal of Information and Computer Sciences, 1982, 11 (5) : 341-356.
  • 4LINGRAS P, WEST C. Interval set clustering of web users with rough K-means [ J ]. Journal of Intelligent Information Systems, 2004, 23(1) : 5-16.
  • 5WANG R Z, MIAO D Q, LI G, et al. Rough overlapping biclustering of gene expression data[ C]//Proceedings of the 7th IEEE International Conference on Bioinformatics and Bioengineering. Washington: 1EEE Computer Society, 2007:828-834.
  • 6PARK H S, JUN C H. A simple and fast algorithm for K-medoids clustedng[J].Expert Systems with Applications, 2009, 36 (2) : 3336-3341.
  • 7SUN Y, ZHU Q M, CHEN Z X. An iterative initial-points refinement algorithm for categorical data clustering [J].Pattern Recognition Letters, 2002, 23 ( 7 ) : 875-884.
  • 8Pawlak Z.Rough Sets.Internaional Journal of Computer ND Informstion science[J].1982(11):241-356.
  • 9Be-zdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum, 1981.
  • 10Lingras P, West C. Interval Set Clustering of Web Users with Rough K-Means [ R]. Technical Report 20(12- 002, Department of Mathmmatics and Computer Science, St. Mary's University, Halifax, Canada.2002.

共引文献38

同被引文献92

引证文献12

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部