期刊文献+

一种基于最大边界投影和l_(2,1)范数正则化的属性选择算法

A novel attribute reduction algorithm based on maximum margin projection and l_(2,1) norm regularization
原文传递
导出
摘要 当数据含有噪声或标签错误时,传统的属性选择方法(如粗糙集)无法得到正确结果,为此提出一种针对含噪、标签错误数据的属性选择方法.首先用最大边界投影方法获得数据的最佳投影;然后通过对投影矩阵进行2,1范数正则化操作,进而获得行稀疏的投影矩阵,据此获得对关键属性的挖掘;最后给出方法的收敛性和针对标签错误数据的有效性证明.实验结果表明,所提出的算法克服了噪声和标签错误的影响,较好地实现了针对含噪、标签错误数据的属性选择. The traditional attribute reduction algorithms such as rough set will fall to get accurate results when deal with the data sets which have noise or labeling errors. Therefore, this paper proposes an attribute reduction algorithm which can analyze this kind of data effectively. Firstly, the best projection of the data sets is obtained by using the maximum margin projection(MMP) method. Then/2,1-norm on the projection matrix is used to achieve row-sparsity, which leads to selecting relevant features. Finally, the proof of the algorithm's convergence and validity to the data sets with errors is given. The result of experiments on the UCI data sets show the effectiveness of the proposed algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2013年第10期1485-1490,共6页 Control and Decision
基金 安徽省自然科学基金项目(1208085MF94)
关键词 属性选择 最大边界投影 2 1范数 噪声数据 标签错误 attribute reductiom maximum margin projectiom l2,1 norm noise data labeling error
  • 相关文献

参考文献11

  • 1徐怡,李龙澍.变精度集对势粗糙集模型[J].控制与决策,2010,25(11):1732-1736. 被引量:5
  • 2Wang Jianping, Zhang Damin. Handwritten Chinese character recognition with variable precision rough set approach[C]. Proc of the 2010 Int Conf on Electrical and Control Engineering. Wuhan, 2010:1108-1111.
  • 3Shi Zhong, Wei Tang, Taghi M. Khoshgoftaar. Boosted noise filters for identifying mislabeled data[R]. Boca Raton: Florida Atlantic University, 2005:383-401.
  • 4Wu Xindong, Zhu Xingquan. Mining with noise knowledge: Error-aware data mining[J]. IEEE Trans on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2008, 38(4): 917-932.
  • 5Wu T T, Chert Y F, Hastie T, et al. Genome- wide association analysis by Lasso penalized logistic regression[J]. Bioinformatics, 2009, 25(6): 714-721.
  • 6Wright J, Ganesh A, Allen Y, et al. Robust face recognition via sparse representation[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227.
  • 7Zhou H, Hastie T, Tibshirani R. Sparse principle component analysis[R]. Stanford: Stanford University, 2004.
  • 8Zhihua Qiao, Lan Zhou, Jianhua Zhuang. Sparse linear discriminant analysis with applications to high dimensional low sample size data[J]. Int J of Applied Mathematics, 2009, 39(1): 6-29.
  • 9Deng Cai, Xiaofei He, Jiawei Han. Spectral regression: A unified approach for sparse sub-space learning[C]. Proc of the 7th LEEE Int Conf on Data Mining. Omaha, 2007: 73- 82.
  • 10Mahdokht Masaeli, Glenn Fung, Jennifer G Dy. From transformation-based dimensionality reduction to feature selection[C]. Proc of the 27th Int Conf on Machine Learning. Haifa, 2010: 751-758.

二级参考文献15

  • 1周磊,舒兰.基于新集对分析的粗糙集模型(英文)[J].模糊系统与数学,2006,20(4):111-116. 被引量:10
  • 2Pawlak Z. Rough sets[J]. Int J of Computer and Information Sciences, 1982, i 1(5): 341-356.
  • 3Pawlak Z, Busse J G, Slowinski R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 4Pawlak Z, Skowron A. Rough sets: Some extensions[J]. Information Sciences, 2007, 177(1): 28-40.
  • 5Li Y, Shiu S C K, Pal S K, et al. A rough set-based case-based reasoner for text categorization[J]. Int J of Approximate Reasoning, 2006, 41(2): 229-255.
  • 6AboulElla Hassanien. Fuzzy rough sets hybrid scheme for breast cancer detection[J]. Image and Vision Computing, 2007, 25(2): 172-183.
  • 7Shyng J Y, Wang F K, Tzeng G H, et al. Rough set theory in analyzing the attributes of combination values for the insurance market[J]. Expert Systems with Applications, 2007, 32(1): 56-64.
  • 8Milind M Mushrif, Ajoy K Ray. Color image segmentation: Rough-set theoretic approach[J]. Pattern Recognition Letters, 2008, 29(4): 483-493.
  • 9Kryszkiewicz M. Rough set approach to incomplete information system[J]. Information Sciences, 1998, 112(1- 4): 39-49.
  • 10Stefanowski J, Tsoukias A. On the extension of rough sets under incomplete information[C]. Proc of the 7th Int Workshop on New Directions in Rough Sets, Data Mining, and Granular Soft Computing. Berlin: Springer-Verlag, 1999: 73-81.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部