期刊文献+

基于MINC方法的脉冲随机混合系统镇定与鲁棒稳定性分析

Stabilization and robust stability for impulsive stochastic systems based on MINC
原文传递
导出
摘要 直接利用fmincon函数(MINC)研究一类在切换时刻具有脉冲行为的Markov切换随机系统.首先给出系统依概率稳定的充分条件,设计了系统的鲁棒镇定控制器,并进行了稳定性分析;然后给出了相应的状态反馈增益矩阵和脉冲增益矩阵的求解方法;最后,通过一个数值算例表明所设计方法的有效性.通过研究可知,许多控制系统的分析和综合问题均可以转化为MINC进行求解. The paper studies a class of Markovian switching stochastic systems which exist impulses at the switching instants using the fmincon function(MINC). Firstly, sufficient conditions for stability in probability of the overall system are given. Furthermore, the stability and robust stabilizing controller are analyzed and designed, and the state feedback gain matrix and the impulsive control gain matrix of the system are obtained. Finally, a numerical example shows the effectiveness of the proposed approach. Through this study, it can be shown that many analysis and synthesis problems of the control systems can be dealt with by using MINC.
出处 《控制与决策》 EI CSCD 北大核心 2013年第10期1547-1553,共7页 Control and Decision
基金 国家自然科学基金项目(60974127 61273091 61273123) 山东省自然科学青年基金项目(ZR2010EQ014)
关键词 脉冲系统 MINC方法 Markov切换 依概率稳定 鲁棒稳定性 impulsive system fmincon function Markovian switching stable in probability robust stability
  • 相关文献

参考文献18

  • 1Cheng P, Deng F Q. Global exponential stability of impulsive stochastic functional differential systems[J]. Statistics and Probability Letters, 2010, 80(23/24): 1854- 1862.
  • 2Zhang H, Guan Z H, Feng G. Reliable dissipative control for stochastic impulsive systems[J]. Automatica, 2008, 44(4): 1004-1010.
  • 3Wu F K, Hu S G, Huang C M. Robustness of general decay stability of nonlinear neutral stochastic functional differential equations with infinite delay[J]. Systems Control Letters, 2010, 59(3/4): 195-202.
  • 4Peng S, Jia B. Some criteria on pth moment stability of impulsive stochastic functional differential equations[J]. Siatishcs and Probability Letters, 2010, 80(13/14): 1085- 1092.
  • 5Liu B, Marquez H J. Uniform stability of discrete delay systems and synchronization of discrete delay dynamical networks via razumikhin technique[J]. IEEE Trans on Circuits and Systems, 2008, 55(9): 2795-2805.
  • 6Liu J, Liu X Z, Xie W C. Impulsive stabilization of stochastic functional differential equations[J]. Applied Mathematics Letters, 2011, 24(3): 264-269.
  • 7Xu L G, Xu D Y. Mean square exponential stability of impulsive control stochastic systems with time-varying delay[J]. Physics Letters A, 2009, 373(3): 328-333.
  • 8Rakkiyappan R, Balasubramaniam P, Cao J D. Global exponential stability results for neutral-type impulsive neural networks[J]. Nonlinear Analysis: Real World Applications, 2010, 11(1): 122-130.
  • 9Samidurai R, Anthoni S, Balachandran K. Global exponential stability of neutral-type impulsive neural networks with discrete and distributed delays[J]. Nonlinear Analysis: Hybrid Systems, 2010, 4(1): 103-112.
  • 10Bao J H, Hou Z T, Wang F X. Exponential stability in mean square of impulsive stochastic difference equations with continuous time[J]. Applied Mathematics Letters, 2009, 22(5): 749-753.

二级参考文献16

  • 1Brockett R W. Lecture notes on stochastic control, harvard university[M]. Cambridge MA, 1995.
  • 2Kushner H I, Dupuis P. Numerical methods for stochastic control problems in continuous time [M]. New York: Springer-Verlag, 2001.
  • 3Klyatskin V I. Dynamics of stochastic systems[M]. New York: Elsevier, 2005.
  • 4Florchinger P. Lyapunov-like techniques for stochastic stability[J]. SIAM J Control Optimation, 1995, 33(4): 1151-1169.
  • 5Ha'sminskii R Z. Stochastic stability of differential equations [M]. Groningen: Sijthoff and Noordhoff, 1980.
  • 6Costa O L V, Fragoso M D. Stability results for discication rete-time linear systems with Markovian jumping parameters[J]. J Mathematics Analysis Application, 1993, 179(1): 154-178.
  • 7Farias D P, Geromel J C, Do Val J B R, et al. Output feedback control of Markov jump linear systems in continuous-time [J]. IEEE Trans on Automatic Control, 2000, 45(5): 944-949.
  • 8Ji Y, Chizeck H J. Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control [J]. IEEE Trans on Automatic Control, 1990, 35(7): 777-788.
  • 9Mao X. Stability of stochastic differential equations with Markovian switching[J]. Stochastic Processes and Their Applications, 1999, 79(1): 45-67.
  • 10Yuan C, Lygeros J. Stabilization of a class of stochastic differential equations with Markovian switching[J]. Systems and Control Letters, 2005, 54 (9) :819-833.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部