期刊文献+

矩阵多项式的牛顿迭代法

Newton Iterative Algorithm for Matrix Polynomials
下载PDF
导出
摘要 研究求解如下矩阵多项式的牛顿迭代算法:P(x)=xm+A1xm-1+…+A m-1x+A m(A i为n×n的复矩阵).首先,在Pereira算法基础上,提出改进算法,以数值示例,比较各自在迭代步骤、计算速度及适用范围上的优缺点.其次,结合初始矩阵的选取方法,研究了二次矩阵多项式的完全解集,给出了求完全解集的主要步骤. In this paper,the Newton iterative method for solving the following matrix polynomials is studied: P( x ) =x^m + A1x^m-1 + … +Am-1x+Am(where Ai,i = 1,…,m are n × n complex matrices). First, based on Pereira' s method, the general iterative formula of Newton' s method is given, and then some numerical examples for the different algorithms are illustrated, and the calculation speed, scope of application, the advantages and disadvantages of iterative steps are compared. Second, combined with the given method of selecting initial ma-trix, the complete set of the quadratic matrix polynomials is studied, and the main steps for computing it are giv-en.
作者 贺勤 张诗诗
出处 《许昌学院学报》 CAS 2013年第5期12-15,共4页 Journal of Xuchang University
基金 河南省科技厅基础与前沿研究计划项目(122300410269) 河南省教育厅自然科学基金重点项目(12A110022)
关键词 矩阵多项式 牛顿迭代法 完全解集 matrix polynomials Newton iterative algorithm complete set
  • 相关文献

参考文献6

  • 1Davis G J. An Algorithm to Compute Solvents of the Matrix Equation AX2 + BX + C = 0[ J]. ACM Trans. Math. Software, 1983,9(2) :246 -254.
  • 2Kratz W, Stickel E. Numerical Solution of Matrix Polynomial Equations by Newton' s Method [ J ]. IMA J. Numer. Anal, 1987, 7:355 - 369.
  • 3Pereira E. On solvents of matrix polynomials[ J]. Applied Numerical Mathematics,2003,47:197 -208.
  • 4Kratz W, Stickel E. Numerical Solution of Matiix Polynomial Equations by Newton' s Method [ ] ]. SIAM J. Numer. Anal, 1987,7(3) :355 -369.
  • 5Loowin P. Linear Algebra and the Fundamentals of Quantum Theory[ M ]. Sweden: Uppsala University, 1964.
  • 6Dennis J E,Traub J F, Weber R P. Algorithms for Solvents of Matrix Polynomials [ J ]. SIAM. J. Numer. Anal, 1978,7 (3) :523 -533.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部