期刊文献+

灰色模型和最小二乘支持向量机在短期负荷组合预测中的应用 被引量:1

Short-term Load Combination Forecasting by Grey Model and Least Squares Support Vector Machines
下载PDF
导出
摘要 提出了结合数据预处理和灰色模型(GM)的最小二乘支持向量机(LS-SVM)短期负荷预测模型和算法.该模型在数据预处理的基础上,根据时刻T,通过缩小的样本集建立灰色模型,利用灰色模型的预测结果构建最小二乘支持向量机,最终,通过建立的最小二乘支持向量机对预测时刻进行预测.该算法不仅通过数据预处理策略提高了预测精度,而且避免了组合预测模型中权值选择问题.采用上述方法对河南电网负荷进行了预测分析,结果证明了该方法的有效性. A short-term load forecasting method and the corresponding algorithm based on least squares support vector machines( LS -SVM) ,grey model(GM) and data processing are proposed. Firstly, the model re-moves some outliers. Secondly, by reducing the sample set to build grey model based on time T, the model uses the predicted results of grey model to establish least squares support vector machines. Finally, the model predicts the load of prediction time by using the least squares support vector machines. The algorithm not only improves the prediction accuracy, but also avoids the combination forecasting model weights choice. The application of the proposed method to forecasting load of Henan power grid, shows that the proposed method is effective.
出处 《许昌学院学报》 CAS 2013年第5期32-37,共6页 Journal of Xuchang University
基金 中国青年基金重点项目(2012QNA01)
关键词 电力系统 灰色模型 数据预处理 最小二乘支持向量机 组合预测 power system grey model data processing least squares support vector machines combina-tion forecasting
  • 相关文献

参考文献8

二级参考文献43

  • 1王锡淮,朱思锋.基于支持向量机的船舶电力负荷预测[J].中国电机工程学报,2004,24(10):36-39. 被引量:40
  • 2周浩,康建伟,陈建华,包松.蒙特卡罗方法在电力市场短期金融风险评估中的应用[J].中国电机工程学报,2004,24(12):74-77. 被引量:92
  • 3[1]T. Masters ,Neural,Novel& Hybird Algorithms for Tim Series Pre-diction[M], John Wiley & Sons. Inc., 1995.
  • 4[2]A. D. Papalexopoulos and T. C. Hesterberg , A regression based approach to short term system load forecasting[C], Proceedings of 1989 PICA Conference , 1989:414-423,
  • 5[3]K. L. Ho , Y. Y. Hsu , C. F. Chen , T. E. Lee , C. C. Liang , T . S. Lai , and K. K. Chen , Short term load foreasting of Taiwan power system using a knowledge-based expert system[J], IEEE Tans.on Power Systems , 1990,5(4):1214-1221.
  • 6[4]A.M. Lanchlan , An improved novelty criterion for resource allocating networks[C] , IEE ,Artifical Neural Networks , Conference Publication , 1997:440:48-52
  • 7[5]D.Srinivasan, S.S.Tan , C.S.Chang and E.K.Chan ,Practical im-plentation of a hybrid fuzzy neural network for one-day-ahead load forecasting[J], IEE Proc.-Gener. Transm,1998.11(6):687-692.
  • 8[6]V.N. Vapnik ,The nature of statistical learning theory[M], New York: Springer, 1999.
  • 9[7]A. Smola and B. Scholkopf , A tutorial on support vector regression[M], NeuroCOLT Tech. Rep. TR 1998-030, Royal Holloway College , London , U.K., 1998.
  • 10[8]J.C. Platt , Fast training of support vector machines using sequential optimization , in B. Scholkopf , C. Burges , and A. Smola. Advances in kernel methods: support vector machines[M], Cambridge, MA: MIT Press, 1998.

共引文献378

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部