期刊文献+

三点弯曲缺口梁T应力的确定 被引量:3

DETERMINATION OF T-STRESS FOR THREE-POINT BENDING NOTCHED BEAMS
原文传递
导出
摘要 T应力是存在于裂纹尖端平行于裂纹方向的应力,是裂纹尖端应力级数展开式中的常数项,它对裂缝尖端应力场的贡献不容忽视。三点弯曲梁是普通实验室中用来测定试件断裂性能的基本几何形式,为保证这些断裂参数确定的有效性,必须首先确定裂纹尖端T应力的大小,才能明确T应力对断裂参数的影响程度。该文通过有限元数值模拟得到跨高比为4的三点弯曲缺口梁和纯弯作用下单边裂纹尖端的T应力大小,与已有文献的比较验证了有限元计算的有效性。在此基础上根据圣维南原理,由跨高比为4和纯弯作用这两种情况下的T应力推导出一般跨高比情况下裂纹尖端的T应力表达式,并以跨高比为6、8和10三种情况为例,进行了计算并与该文的有限元计算结果进行比较,验证了该文提出的T应力计算公式的可靠性。 The T-stress which acts parallel to a crack, which corresponds to the constant term in the stress series at the crack tip, and its influence on the stress field can not be ignored. Three-point bending beam is generally used for testing fracture parameters in ordinary laboratories. Under this circumstance, T-stress at the crack tip must be determined first to see whether its value would influence the fracture parameters. In this paper, finite element program Abaqus is used to derive the T-stress for a three-point bending beam with a span-to-depth ratio of 4 and a single-edge notched beam subjected to pure bending. Thereafter, a general expression for T-stress of three-point bending beams of arbitrary span-to-depth ratio is presented based on St. Venant Principle. T-stress of three-point bending beams with span-to-depth ratio of 6, 8 and 10 is calculated using the proposed expression, and reasonable agreement is observed with the finite element analysis.
出处 《工程力学》 EI CSCD 北大核心 2013年第10期14-18,27,共6页 Engineering Mechanics
基金 国家自然科学基金项目((50708014)
关键词 断裂力学 裂纹尖端 三点弯曲梁 T应力 有限元分析 fracture mechanics crack tip three-point bending beam T-stress finite element analysis
  • 相关文献

参考文献18

  • 1Peter M H, James D L. Combination of finite element analysis and analytical crack tip solution for mixed mode fracture [J]. Engineering Fracture Mechanics, 1995, 50(5/6): 849-868.
  • 2赵艳华,陈晋,张华.T应力对Ⅰ-Ⅱ复合型裂纹扩展的影响[J].工程力学,2010,27(4):5-12. 被引量:23
  • 3Zhao S Q, Guo S H. Two-parameter criterion for crack growth under compressive loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(8): 1389- 1393.
  • 4Larrsson S G, Carlsson A J. Influence of non-singular term and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials [J]. Journal of the Mechanics and Physics of Solids, 1973, 21 : 263 - 77.
  • 5Hadj Meliani M, Matvienko Y G, Pluvinage G. Two-parameter fracture criterion (Kp,c-Tef, c) based on notch fracture mechanics [J]. International Journal of Fracture, 2011,167(2): 173- 182.
  • 6Hiroshi Tada, Paris P C, Irwin G R. The stress analysis of cracks handbook [M]. New York: ASME Press, 2000.
  • 7Yang B, Ravi-Chandar K. Evaluation of elastic T-stress by the stress difference method [J]. Engineering Fracture Mechanics, 1999, 64(5): 589-605.
  • 8Fett T. T-stresses in rectangular plates and circular disks [J]. Engineering Fracture Mechanics, 1998, 60(5/6): 631 -652.
  • 9Leevers P S, Radon J C. Inherent stress biaxiality in various fracture specimen geometries [J]. International Journal of Fracture, 1982, 19: 311-325.
  • 10Karihaloo B L, Xiao Q Z. Higher order terms of the crack tip asymptotic field for a notched three-point bend beam [J]. International Journal of Fracture, 2001, 112(2): 111-128.

二级参考文献18

  • 1杨庆,李强,赵维,刘洪亮.翼型裂纹扩展特性的试验和数值分析[J].水利学报,2009,39(8):934-940. 被引量:12
  • 2Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear [J]. Journal of Basic Engineering, Transactions of the ASME, 1963, 85: 525-527.
  • 3William M L. On the stress distribution function of wide applicability [J]. Journal of Applied Mechanics, 1957, 24: 109-114.
  • 4Ueda Y, Ikeda K, Yao T, Aoki M. Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads [J]. Engineering Fracture Mechanics, 1983, 18:1131 - 1158.
  • 5Ayatollahi M R, Pavier M J, Smith D J. Mode I cracks subjected to large T-stresses [J]. International Journal of Fracture, 2002, 117: 159- 174.
  • 6Betegon C, Hancock J W. Two-parameter characterization of elastic-plastic crack-tip fields [J]. Journal of Applied Mechanics, 1991, 58: 104-110.
  • 7Smith D J, Ayatollahi M R, Pavier M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading [J]. Fatigue Fracture and Engineering Materials, 2001, 24: 137-150.
  • 8William M L. On the stress distribution function of wide applicability [J]. Journal of Applied Mechanics, 1957, 24: 109-114.
  • 9Leevers P S, Radon J C, Culver L E. Inherent stress biaxiality in various fracture specimen geometries [J]. International Journal of Fracture, 1982, 19:311 - 325.
  • 10Smith D J, Ayatollahi M R, Pavier M J. On the consequences of T-stress in elastic brittle fracture [J]. Proceedings of the Royal Society, 2006, 462: 2415-2437.

共引文献32

同被引文献37

引证文献3

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部