期刊文献+

基于自振频率与神经网络方法的简支梁预应力识别 被引量:4

Prestress Identification for Simple Beam Based on Natural Frequency and Neural Network
下载PDF
导出
摘要 在桥梁工程领域大量使用预应力梁预制技术,其构件中现有预应力大小的识别对预应力结构和构件的性能检测鉴定起到至关重要的作用。初步探讨了基于自振频率测试与神经网络技术识别简支梁的预应力方法。通过简支梁模型试验,测得不同张拉力条件下的自振频率,面向BP神经网络识别技术,对测试数据进行处理。分别探讨了以部分试验数据构造神经网络训练样本,然后应用构造的BP网络来识别试验结果的方法。研究结果表明,就所试验研究的情况而言,80%的识别结果其精度在可接受范围,对于预应力预制构件的检测具有实用意义。 Precast pre - stressed beams are widely used in bridge engineering. Identification of value of prestress existing in components plays an important role in detection and identification on the performance of prestressed structures and components. A preliminarily study for prestress identification for simple beam based on natural frequency measurement and neural network technology is carried out. With simple beam model test, the natural frequencies under different pre-stressing conditions are measured. The test data are processed based on the BP neural network technology. The methods and results that using some test data to construct a neural network training samples and distinguish test results with BP network are discussed respectively. The results show that for the cases studied, 80% of the identification results are within an acceptable range of accuracy, which has practical significance for detection of precast pre-stressed components.
出处 《公路交通科技》 CAS CSCD 北大核心 2013年第10期39-43,共5页 Journal of Highway and Transportation Research and Development
基金 国家自然科学基金项目(51178070)
关键词 桥梁工程 简支梁 神经网络 模型试验 结构识别 预应力 自振频率 bridge engineering simple beam neural network model test structure identification prestress natural frequency
  • 相关文献

参考文献12

  • 1SAIID M, DOUGLAS B, FENG S. Prestress Force Effete on Vibration Frequency of Concrete Bridges [ J ]. Journal of Structure Engineering, ASCE, 1994, 190 ( 7 ) : 2233 - 2241.
  • 2刘龄嘉,贺拴海,赵小星,缪伟.预应力对混凝土T梁振动频率影响的试验研究[J].铁道建筑,2007,47(2):4-6. 被引量:2
  • 3刘龄嘉,贺拴海,赵小星.基于动力性能的PC梁有效预应力预测[J].长安大学学报(自然科学版),2009,29(6):37-40. 被引量:5
  • 4ABRAHAM M A, PARK S Y, STUBBS N. Loss of Prestress Prediction on Nondestructive Damage Ication Algorithms [ C] J// Smart Structures and Materials 1995. San Diego, CA: SPIE, 1995: 60- 67.
  • 5刘承斌,王柏生,曲昌春.用振动法进行PRC梁的预应力损失检测[J].振动与冲击,2003,22(3):95-97. 被引量:19
  • 6Lt Zhong-rong, LAW S S, LIU Ji-ke, Effects of Prestress Force on Vibration of a Prestressed Beam [ J ]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2006, 45 (2): 119-120, 128..
  • 7KO J M, NI Y Q. Development of Vibration-based Damage Detection Methodology for Civil Engineering Structures [ C ] //Proceeding of the 1st International Conference on Structural Engineering. Kunming, China: [ s. n. ] 1999 : 37 - 56.
  • 8FARRA C R, SOHN H, FUGATE M L, et al. Integrated Structural Health Monitoring [ C ] JJ Proceedings of Advanced Nondestructive Evaluation for Structural and Biological Health Monitoring. Newport Beach, CA: SPIE, 2001, 4335 : 1 - 8.
  • 9CHANT H T, NI Y Q, KO J M. Neural Network Novehy Filtering for Anomaly Detection of Tsing Ma Bridge Cables [ C]// Proceeding of the 2nd International Workshop on Structural Health Monitoring 2000. Palo Alto, California: Stanford University, 2000 : 430 - 439.
  • 10孙宗光,高赞明,倪一清.基于神经网络的损伤构件及损伤程度识别[J].工程力学,2006,23(2):18-22. 被引量:28

二级参考文献36

共引文献50

同被引文献45

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部