摘要
基于贝叶斯非线性分层模型的一元索赔准备金评估随机性方法,设计了10种合适的模型结构,将非线性分层模型与贝叶斯方法结合起来,应用WinBUGS软件对精算实务中的经典流量三角形数据进行数值分析,并使用MCMC随机模拟方法得到了各种模型结构下最终损失和索赔准备金的完整预测分布及其分布特征。这种方法克服了其他准备金评估模型存在的缺陷,不但可以考虑不同事故年索赔进展的同质性和差异性,而且可以有效度量尾部进展的不确定性。
The paper proposes Bayesian non-linear hierarchical models for univariate stochastic claims reserving in non-life insurance, designs ten suitable model structures through combining non-linear hierarchical models with Bayesian method, so as to provide some numerical analysis for the classic runoff triangle data in the actuarial practice with WinBUGS software, and further obtains the predictive distributions and relevant distribution characteristics of ultimate loss and claims reserves under various model structures using MCMC stochastic simulation method. The proposed method overcomes some inherent defects of the other reserving models. The method can not only consider the homogeneity and heterogeneity of claims developments in different accident years, but also can measure effectively the uncertainty of tail development.
出处
《山西财经大学学报》
CSSCI
北大核心
2013年第10期20-31,共12页
Journal of Shanxi University of Finance and Economics
基金
国家自然科学基金面上项目"非寿险定价与索赔准备金评估的分层模型研究"(71271121)
中央高校基本科研业务费专项资金资助项目(跨学科创新团队建设基金)"金融工程与精算学中的定量风险管理统计模型与方法"(NKZXTD1101)
关键词
贝叶斯方法
分层模型
非线性增长曲线
索赔准备金评估
预测分布
Bayesian Method
hierarchical models
non-linear growth curve
claims reserving
predictive distribution