期刊文献+

索赔准备金评估的贝叶斯非线性分层模型 被引量:5

Bayesian Non-linear Hierarchical Models for Claims Reserving
原文传递
导出
摘要 基于贝叶斯非线性分层模型的一元索赔准备金评估随机性方法,设计了10种合适的模型结构,将非线性分层模型与贝叶斯方法结合起来,应用WinBUGS软件对精算实务中的经典流量三角形数据进行数值分析,并使用MCMC随机模拟方法得到了各种模型结构下最终损失和索赔准备金的完整预测分布及其分布特征。这种方法克服了其他准备金评估模型存在的缺陷,不但可以考虑不同事故年索赔进展的同质性和差异性,而且可以有效度量尾部进展的不确定性。 The paper proposes Bayesian non-linear hierarchical models for univariate stochastic claims reserving in non-life insurance, designs ten suitable model structures through combining non-linear hierarchical models with Bayesian method, so as to provide some numerical analysis for the classic runoff triangle data in the actuarial practice with WinBUGS software, and further obtains the predictive distributions and relevant distribution characteristics of ultimate loss and claims reserves under various model structures using MCMC stochastic simulation method. The proposed method overcomes some inherent defects of the other reserving models. The method can not only consider the homogeneity and heterogeneity of claims developments in different accident years, but also can measure effectively the uncertainty of tail development.
出处 《山西财经大学学报》 CSSCI 北大核心 2013年第10期20-31,共12页 Journal of Shanxi University of Finance and Economics
基金 国家自然科学基金面上项目"非寿险定价与索赔准备金评估的分层模型研究"(71271121) 中央高校基本科研业务费专项资金资助项目(跨学科创新团队建设基金)"金融工程与精算学中的定量风险管理统计模型与方法"(NKZXTD1101)
关键词 贝叶斯方法 分层模型 非线性增长曲线 索赔准备金评估 预测分布 Bayesian Method hierarchical models non-linear growth curve claims reserving predictive distribution
  • 相关文献

参考文献22

  • 1Coyne F J. Loss Reserving: A Fresh Look: The Difficulty in Setting Reserves and the Risk of Insolvency are Just Two of the Many Reasons to Revisit Reserving[J ]. Best's Review,2008,109(5):96-97.
  • 2England P D, Verrall R J.Stoehastie Claims Reserving in General Insurance [ J ]. British Actuarial Journal, 2002,8 (3) : 443- 518.
  • 3De Alba E.Bayesian Estimation of Outstanding Claims Reserves[ J ].North American Actuarial Journal, 2002,6(4) : 1-20.
  • 4Ntzoufras I,Dellaportas P.Bayesian Modelling of Outstanding Liabilities Incorporating Claim Count Uncertainty [J].NorthAmerican Actuarial Journal, 2002, 6 ( 1 ) : 113-128.
  • 5Meyers G. Estimating Predictive Distributions for Loss Reserve Models [ J J. Variance, 2007,1(. 2) : 248-272.
  • 6De Alba E, Nieto-Barajas L E.Claims Reserving: A Correlated Bayesian Model[J ]. Insurance:Mathematics and Economics,2008,43(3):368-376.
  • 7Antonio K, Beirlant J.Issues in Claims Reserving and Credibility: A Semiparametric Approach with Mixed Models [J].Journal of Risk and Insurance, 2008, 75 (3) : 643-676.
  • 8Meyers G.Stochastic Loss Reserving with the Collective Risk Model[ J ]. Variance, 2009,3 (2) : 239-269.
  • 9Peters G W, Shevchenko P V,WOthrich M V.Model Uncertainty in Claims Reserving within Tweedie's Compound Poisson Models[ J ].ASTIN Bulletin, 2009,39( 1 ) : 1-33.
  • 10Verrall R J,Wtithrich M V.Reversible Jump Markov Chain Monte Carlo Method for Parameter Reduction in Claims Reserving[J].North American Actuarial Journal, 2012,16(2):240-259.

二级参考文献37

  • 1Halliwell L J.Loss Prediction by Generalized Least Squares [ J ].Proceedings of the Casualty Actuarial Society, 1996(83):436-489.
  • 2Renshaw A E,Verrall R J.A Stochastic Model Underlying the Chain Ladder Technique [ J ].British Actuarial Journal,1998,4(4): 903-923.
  • 3Clark D R.LDF Curve Fitting and Stochastic Loss Reserving: A Maximum Likelihood Approach[ J ].Casualty Actuarial Society Fo- rum,2003(Fall):41-91.
  • 4England P D,Verrall R J.Predictive Distributions of Outstanding Liabilities in General Insurance [ J ].Annals of Actuarial Science, 2007,1 (2):212-270.
  • 5McCullough P,Nelder J A.Generalized Linear Models[ M ].Chapman & HaI1/CRC, 1989.
  • 6Klugman S A,Panjer H H, Willmot G E.Loss Models: From Data to Decisions[M]. John Wiley&Sons,1998:60-68.
  • 7Mack T.Distribution-free Calculation of the Standard Error of Chain Ladder Reserve Estimate [J ].ASTIN Bulletin,1993,23 (2): 213-225.
  • 8Guszcza J C.Hierarchical Growth Curve Models for Loss Reserving[ J ].Casualty Actuarial Society E-Forum,2008(Fall):146-1721.
  • 9Bjorkwall S,Hfissjer O,Ohlsson E,Verrall R J.A Generalized Linear Model with Smoothing Effects for Claims Reserving [ J ].Insur- ance: Mathematics and Economics, 2011,49(1):27-37.
  • 10Zehnwirth B.Probabilistic Development Factor Models with Applications to Loss Reserve Variability [J].Prediction Intervals and Risk Based Capital. Casualty Actuarial Society Forum Spring,1994(2):447-606.

共引文献11

同被引文献98

  • 1毛泽春,吕立新.用双广义线性模型预测非寿险未决赔款准备金[J].统计研究,2005,22(8):52-55. 被引量:12
  • 2孟生旺.未决赔款准备金评估模型的比较研究[J].统计与信息论坛,2007,22(5):5-9. 被引量:7
  • 3高爲.基于RJMCMC的准备金风险随机模拟算法[D].天津财经大学硕士学位论文,2013.
  • 4钱晗.改进Bootstrap方法在未决赔款准备金估计中的应用[D].吉林大学硕士学位论文,2011.
  • 5邱玉玲.基于个体数据流量三角形评估未决赔款准备金的随机方法[D].华东师范大学硕士学位论文,2010.
  • 6俞雪梨.基于个体数据的准备金评估[D].华东师范大学博士学位论文,2012.
  • 7Ajne B. Additivity of chain-ladder projections[ J]. ASTIN Bulletin, 1994,24(2) :311 -318.
  • 8Barnett G, Zehnwirth B. Best estimates for reserves [ J ]. Proceedings of the Casualty Actuarial Society ,2000, 87:245 - 321.
  • 9Braun C. The prediction error of the chain ladder method applied to correlated runoff triangles[ J] . ASTINBulletin,2004,34(2) :399 -423.
  • 10Brehm P J. Correlation and the aggregation of unpaid loss distributions [ J ]. Casualty Actuarial Society E-Fo-rum,2002 ,(3) :1 -23.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部