期刊文献+

任意范数格基分段规约 被引量:1

Lattice basis segment reduction for arbitrary norms
原文传递
导出
摘要 目前常见的格基规约理论主要集中在欧几里德范数上,涉及到任意范数的不多.本文把Koy等人提出的分段LLL规约推广到任意范数上.给出了任意范数分段规约基的定义,讨论了规约基的界并给出相应证明.设计了求解任意范数分段规约基的SR算法,算法具有维数n的多项式时间复杂度.最后把SR应用到NTRU格上,使用并行处理得到更高效的适用于高维格的PSR算法.实验结果表明,PSR算法在运行时间上比SR算法快2倍以上. The known lattice basis reduction concepts and algorithms are mainly based on the Euclidean norm, rarely based on arbitrary norms. The concept of Koy's segment LLL-reduction is generalized from Euclidean norm to arbitrary norms. The definition of segment reduction for arbitrary norms is presented. Bounds for the quality of segment reduction bases are proved and SR algorithm to construct the reduction basis efficiently is given. SR algorithm executes in a polynomial number time of lattice rank n. At last, a parallel algorithm PSR for high rank lattice reduction is designed. Experiments on NTRU lattices show that PSR is at least twice as effective as SR.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期1005-1010,共6页 Journal of Sichuan University(Natural Science Edition)
关键词 格基 分段规约 范数 lattice basis, segment reduction, norm
  • 相关文献

参考文献19

  • 1Nguyen P Q. SternJ. Lattice reduction in cryptolo?gy: an update[CJ/ /Hanrot G. Morain F. Thome E. Algorithmic Number Theory. Berlin: Springer. 2000: 85.
  • 2Gama N. How-Grave-Graham N. Koy H. et al. Rankin's constant and blockwise lattice reduction[CJ/ /Cynthia D. Advances in Cryptology-CRYPTO 2006. Berlin: Springer. 2006: 112.
  • 3Nguyen P Q. Regen O. Learning a parallelepiped: cryptanalysis of GGH and NTRU signatures[J].Journal of Cryptology. 2009. 22(2): 139.
  • 4刘立强,刘念,李子臣.基于格基规约的公钥密码体制攻击方法研究[J].北京电子科技学院学报,2012,20(2):67-72. 被引量:2
  • 5田苗苗,黄刘生,杨威.高效的基于格的环签名方案[J].计算机学报,2012,35(4):712-718. 被引量:17
  • 6谢朝海,陶然,王越,李继勇.原-对偶规约基与连续最小元[J].电子学报,2008,36(6):1124-1129. 被引量:1
  • 7Schnorr C P. A hierarchy of polynomial lattice basis reduction algorithms[J]. Theoretical Computer Sci?ence. 1987. 53: 20l.
  • 8Koy H. Schnorr C P. Segment LLL-reduction of lat?tice bases[CJ/ /Silverman] H. Cryptography and Lattices. Berlin: Springer. 2001: 67.
  • 9Koy H. Schnorr C P. Segment LLL-reduction with floating point orthogonalization[CJ/ /Silverman] H. Cryptography and Lattices. Berlin: Springer, 2001: 81.
  • 10Nguyen. The LLL algorithmj M]. Berlin: Spring?er. 2010: 169.

二级参考文献33

  • 1Hoffstein J,Silverman J H.NTRU:a ring based public key cryptosystem[C]//Algorithmic Number Theory (ANTS III).[S.n.]: Springer-Verlag, 1998,1423 : 267-288.
  • 2Lenstra A H,Lovasz L.Factoring polynomials with rational coefficients[J].Mathematische Annalen, 1982,261 : 513-534.
  • 3Schnorr C P.Block reduced lattice bases and successive minima[J]. Combinatories, Probability and Computing, 1994,3 : 503-522.
  • 4洪浩.格基规约算法研究[D].西安:西安电子科技大学,2008.
  • 5Victor Shoup.Number Theory Library (NTL) [EB/OL].http ://www. shoup.net/ntl.
  • 6Seidel T E, Socek D, Sramka M.Parallel symmetric attack on NTRU using non-deterministic lattice reduction[J].Designs, Codes and Cryptography, 2004,32 : 369-379.
  • 7P Nguyen, J Stem. Lattice reduction in cryptology: An update [A ]. W. Bosma. Algorithmic Number Theory-Proceedings of ANTS-IV, Lecture Notes in Computer Science, vol. 1838 [ C ]. Berlin: Springer-Verlag, 2000.85 - 112.
  • 8C P Schnorr. A hierarchy of polynomial lattice basis reduction algorithms[ J]. Theoretical Computer Science, 1987,53(2) : 201 - 224.
  • 9H Koy. Primal/duale Segment-Reduktion von Gitterbasen[ EB/ OL]. http://www. mi. informatik. unifmnkfurt. de/research/ papers. html.
  • 10C P Schnorr. Blockwise Lattice Basis Reduction Revisited[ EB/ OL]. http://www. mi. informatik, uni-franlffurt. de/research/ papers. html.

共引文献17

同被引文献10

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部