期刊文献+

基于MFCC和HMM的气固流型辨识 被引量:2

Gas-solid flow regime identification based on MFCC and HMM
下载PDF
导出
摘要 针对气力输送管道中测控装置后常见的三种过渡流型,即中心流、环状流和层状流,采用静电传感器作为测量装置获得静电流动噪声信号,借鉴语音信号处理方法,提取静电流动噪声信号的梅尔频率倒谱系数(MFCC)及其一阶差分作为特征参数,用特征参数训练连续高斯混合密度隐马尔科夫模型(CGHMM),建立不同流型的模型库,再用训练好的CGHMM模型对提取的特征参数进行分类,进而实现流型识别.实验结果表明,该方法识别率达到98%,为气固流流型识别及气力输送测控装置提供了新的研究方法. Aiming at three common transitional flow regimes behind the detection and control devices in the pneumatic conveying pipeline, namely central flow, annular flow and stratified flow, the electrostatic flow noise signals were obtained through adopting an electrostatic sensor as the measuring equipment. With the speech signal processing method, the mel-frequency cepstrum coefficient (MFCC) and its first order difference of electrostatic flow noise signals were extracted as the feature parameters. In addition, the continuous Gaussian mixture hidden Markov model (CGHMM) was trained with the feature parameters, and the model libraries for different flow regimes were established. Then the extracted feature parameters were classified with the trained CGHMM model, and thus, the flow regimes identification was realized. The experimental results show that the identification rate of the proposed method reaches 98%, and a novel research method for the gas-solid flow regime identification as well as the pneumatic conveying detection and control devices is provided.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2013年第5期555-560,共6页 Journal of Shenyang University of Technology
基金 国家自然科学基金资助项目(51177120)
关键词 气固两相流 测控装置 语音信号处理 流型识别 梅尔频率倒谱系数 静电传感器 流动噪声信号 连续高斯混合密度隐马尔科夫模型 gas-solid two-phase flow detection and control device speech signal processing flow regime identification mel-frequency cepstrum coefficient (MFCC) electrostatic sensor flow noise signal continuous Gaussian mixture hidden Markov model (CGHMM)
  • 相关文献

参考文献12

  • 1Drahos J, Cermak J. Diagnostics of gas-liquid flow patterns in chemical engineering systems [ J ]. Chemi- cal Engineering and Processing, 1989,26 ( 2 ) : 147 - 164.
  • 2Li J, Xu C L, Wang S M. Local particle mean velocity mea-surement using electrostatic sensor matrix in gas- solid two-phase pipe flow [ J ]. Flow Measurement and Instrumentation,2012,27 : 104 - 112.
  • 3阚哲,邵富群,丁岚.基于静电传感器的相关流速测量[J].沈阳工业大学学报,2010,32(1):90-94. 被引量:8
  • 4Hu H L, Dong J, Zhang J, et al. Identification of gas/ solid two-phase flow regimes using electrostatic sen- sors and neural-network techniques [ J ]. Flow Mea- surement and Instrumentation, 2011,22 ( 5 ) : 482 - 487.
  • 5Fallah A,Jamaati M, Soleamani A. A new online sig- nature verification system based on combining Mellin transform, MFCC and neural network [ J ]. Digital Sig- nal Processing,2011,21 (2) :404 - 416.
  • 6Yan Y, Xu L J, Lee P. Mass flow measurement of fine particles in a pneumatic suspension using electrostatic sensing and neural network technique [ J ]. IEEE Transactions on Instrumentation and Measurement, 2006,55 (6) :2330 - 2334.
  • 7Arias J D, Godino J I, Saenz N, et al. An improved method for voice pathology detection by means of a HMM-based feature space transformation [ J ]. Pattern Recognition,2010,43 ( 9 ) : 3100 - 3112.
  • 8Boutros T ,Liang M. Detection and diagnosis of bea- ting and cutting tool faults using hidden Markov mo- dels [J]. Mechanical Systems and Signal Processing, 2011,25(6) :2102 -2124.
  • 9Chauhan S, Wang P, Lira C S, et al. A computer aided MFCC-based HMM system for automatic auscultation [J]. Computers in Biology and Medicine, 2008,38 (2) :221 -233.
  • 10Hu H L,Xu T M, Hui S E, et al. A novel capacitive system for concentration measurement of pneumatical- ly conveyed pulverized fuel at power stations [ J ]. Flow Measurement and Instrumentation, 2006,17 (2) : 87 - 92.

二级参考文献13

  • 1陆汝华,杨胜跃,朱颖,樊晓平.基于DHMM的轴承故障音频诊断方法[J].计算机工程与应用,2007,43(17):218-220. 被引量:12
  • 2Ocak H,Loparo K A.A new bearing fault detection and diagnosis scheme based on hidden markov modeling of vibration signals[C]// IEEE International Conference on Acoustics,Speech,and Signal Processing, 2001 ( 5 ) : 3141-3144.
  • 3Rabiner L R.A Tutorial on hidden markov models and selected applications in speech recognition[J].Proceedings of the IEEE, 1989,77(2) :257-286.
  • 4Huang Hai-dong.Spoken language processing[M].[S.l.]:Prentice Hall, 2001.
  • 5Gajewski J B. Monitoring electrostatic flow noise for mass flow and mean velocity measurement in pneumatic transport[J]. Journal of Electrostatics, 1996,37 : 261 - 276.
  • 6Yan Y, Byrne B, Woodhead S R, et al. Velocity measurement of pneumatically conveyed solids using electrodynamic sensors [J]. Measurement Science and Technology, 1995,6:515 - 537.
  • 7Ma J, Yan Y. Design and evaluation of electrostatic sensors for the measurement of velocity of pneumatically conveyed solids [J]. Flow Measurement and Instrumentation ,2000,11 : 195 - 204.
  • 8Beck M S. Correlation in instruments:cross correlation flowmeters [J].Journal of Physics E: Scientific Instruments, 1981,14:7 - 19.
  • 9Hammer E A, Green R G. The spatial filtering effect of capacitance transducer electrodes [J].Journal of Physics E : Scientific Instruments, 1983,16:7 - 19.
  • 10Yan Y. Mass flow measurement of bulk solids in pneumatic pipelines[J].Measurement Science and Technology, 1996,7 : 1687 - 1706.

共引文献21

同被引文献16

  • 1沙毅,曹英禹,郭玉刚.磨煤机振声信号分析及基于BP网的料位识别[J].东北大学学报(自然科学版),2006,27(12):1319-1323. 被引量:7
  • 2Pearson T C. Detection of pistachio nuts with closed shells using impact acoustics[J]. Applied Engineering in Agriculture, 2001, 17(2) : 249-253.
  • 3Cetin A gnis, Pearson Tom C, Tewfik Ahmed H. Classification of closed and open shell pistachio nuts using principal component analysis of impact acoustics[C]//Proceedings-IEEE Internation- al Conference on Acoustics, Speech, and Signal Processing, May, 17-21, 2004, Montreal, CANADA. New York: IEEE, 2004 677 680.
  • 4Pearson T C, A Enis Cetin, Ahmed H Tewfik, et al. Feasibility of impact-acoustic emissions for detection of damaged wheat ker- nels[J]. Digital Signal Processing, 2007, 17(3): 617-633.
  • 5Mahmoud ()mid. Development of pistachio sorting system using principal component analysis (PCA) assisted artificial neural net- work (ANN) of impact acoustics[J]. Expert Systems with Ap- plications, 2010, 37(10): 7 205-7 212.
  • 6Adel Hosainpour, Mohammad H Komarizade, Asghar Mahmou di, et al. High speed detection of potato and clod using an acous- tic based intelligent system[J]. Expert Systems with Applica- tions, 2011, 38(10): 12 101-12 106.
  • 7Buerano J, Zalameda J, Ruiz R S. Microphone system optimiza- tion for free fall impact acoustic method in detection of rice ker nel damage[J]. Computers and Electronics in Agriculture, 2012, 85(7): 140-148.
  • 8A Enis Cetin, Tom C Pearson, R Akin Sevimli. System for re- moving shell pieces from hazelnut kernels using impact vibration analysis[J]. Computers and Electronics in Agriculture, 2014, 101(11): 11-16.
  • 9Mahmoud Omid, Asghar Mahmoudi, Mohammad H ()mid. An intelligent system for sorting pistachio nut varieties[J]. Expert Systems with Applications, 2009, 36(9): 11 528-11 535.
  • 10Mahmoud Omid. Design of an expert system for sorting pista- chio nuts through decision tree and fuzzy logic classifier[J]. Expert Systems with Applications, 2011, 38(4): 4 339 4 347.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部