期刊文献+

驾驶员脑电模糊熵与酒后驾车交通事故倾向相关性研究 被引量:2

Study on Correlation between Fuzzy Entropy of Drivers' EEGs and Traffic Accident Proneness to Drunk Driving
下载PDF
导出
摘要 少数驾驶员适度饮酒后安全驾驶能力不降反升和不同人对酒精作用存在个体差异的事实表明:利用血液酒精浓度(BAC)判定酒后驾车行为的技术方案存在不足。为探索新型量化参数,结合酒后状态诱发试验和模拟驾驶测试,测取12位驾驶员不同程度饮酒后的脑电(EEG)和规范化交通事故倾向指标。结果发现:随着饮酒量的增加,驾驶员左额叶区EEG的瞬时复杂度和长时周期度都增加。结合模糊熵算法构造并计算EEG特征参数。相关性分析表明:在驾驶员从未饮酒到重度饮酒的过程中,其左额叶区EEG模糊熵和规范化事故倾向指标间的平均相关系数为0.76,二者正相关。因此,根据该模糊熵变化能判断其酒后安全驾驶能力的变化。 Using blood alcohol concentration as a reference to recognize drunk driving behaviors shows inherent deficiencies, since there exist facts that drinking alcohol does not necessarily to reduce but increase the ability to drive safety and different people may get different alcohol sensitivities. In order to explore a new substitutive technology, drunken state inducing experiments and driving simulation were designed so as to measure 12 qualified drivers' EEGs and traffic accident proneness. Experiment results showed that there were an increase in both instant complexity and long-term periodicity of EEGs measured from left frontal lobe as drivers drunk more. A characteristic parameter for EEG was constructed and calcu- lated on basis of the fuzzy entropy algorithm. Correlation study indicated that average correlation coefficient between fuzzy entropy of EEGs and normalized traffic accident proneness was 0.77, which proved they were positive correlated, which means that fuzzy entropy of EEGs from left frontal lobe could be taken as a novel for to recognizing a change in ability to drive safety.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2013年第8期59-64,共6页 China Safety Science Journal
基金 国家自然科学基金资助(61104225 61004114)
关键词 交通运输安全 酒后驾车 事故倾向 脑电(EEG) 模糊熵 traffic safety drunk driving traffic accident proneness electroencephalogram(EEG) fuzzy entropy
  • 相关文献

参考文献15

  • 1Peden M, Scurfield R, Sleet D, et al. The World Report on Road Traffic Injury Prevention[R]. Geneva: World Health Organization, 2004:3 - 10.
  • 2World Health Organization. Drinking and Driving: A Road Safety Manual for Decision Makers and Practitioners[M]. Geneva: Global Road Safety Partnership, 2007: 17 -22.
  • 3National Highway Traffic Safety Administration. Traffic Safety Facts 2008: A Compilation of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and the General Estimates System[M]. Washington DC: U.S. Department of Transportation, 2008:213 -229.
  • 4Toroyan Tami. Global Status Report on Road Safety: Time for Action[M]. Geneva: World Health Organization, 2009: 11 -38.
  • 5钟铭恩,吴平东,彭军强,洪汉池.基于血液酒精浓度和脑电特征的酒后驾车事故倾向对比研究[J].中国生物医学工程学报,2013,32(3):378-383. 被引量:6
  • 6Murata K, Fujita E, Kojima S, et al. Noninvasive biological sensor system for detection of drunk driving[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15 ( 1 ) : 19 - 25.
  • 7Sakairi M, Suzuki D, Nishimura A, et al. Simultaneous detection of breath and alcohol using breath-alcohol sensor for prevention of drunk driving[J].IEICE Electronics Express, 2010, 7(6):467 -472.
  • 8Koukiou G, Panagopoulos G, Anastassopoulos V. Drunk person identification using thermal infrared images[C]. Proceedings of the 16th International Conference on Digital Signal Processing, 2009:4 -6.
  • 9钟铭恩,吴平东,彭军强,洪汉池.基于脑电信号的驾驶员情绪状态识别研究[J].中国安全科学学报,2011,21(9):64-69. 被引量:18
  • 10WU Di, CHEN Zhi-hua, FENGRui-fang, et al. Siudy on human brain after consuming alcohol based on EEG signal[C]. Pro- ceedings of the 2010 3ra IEEE International Conference on Computer Science and Information Technology, 2010:406 -409.

二级参考文献34

  • 1SHAO Chenxi SHEN Linfeng WANG Xufa and YIN Shijie(1. Department of Computer Science & Technology, University of Science & Technology of China, Hefei 230027, China,2. Department of Neurology, University of Medical Science of Anhui, Hefei 230022, China).Nonlinear analysis of the alcoholic's EEG[J].Progress in Natural Science:Materials International,2002,12(12):915-919. 被引量:3
  • 2江朝晖,刘大路,冯焕清,王涛.睡眠中血压信号的关联维数计算[J].中国生物医学工程学报,2005,24(3):330-333. 被引量:1
  • 3任志军,田心.脑电高阶Lyapunov指数的估计及其仿真计算[J].中国生物医学工程学报,2005,24(6):676-680. 被引量:6
  • 4白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 5Grassberger P,Procaccia I.Measuring the strangeness of strange attractors[J].Physica D,1983,9(1 -2):189 -208.
  • 6Rosenstein MT,Collins JJ,De Luca CJ.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physics D,1993,65(1-2):117-134.
  • 7Pincus SM.Approximate entropy as a measure of system complexity.Proc Natl Acad Sci USA.1991,88 (6):2297 -2301.
  • 8Richman JS,Moorman JR.Physiological time series analysis using approximate entropy and sample entropy.Am.J.Physiol.Heart Physio.2000,278(6):H2039-H2049.
  • 9Hettich S,Bay SD(1999).The UCI KDD Archive[http://kdd.ics.uci.edu].Irvine,CA:University of California,Department of Information and Computer Science.
  • 10Dula Chris S, Geller E Scott. Risky, aggressive, or emotional driving: Addressing the need for consistent communication in research[J]. Journal of Safety Research,2003,34(5) :559 -566.

共引文献42

同被引文献26

  • 1李纯明,陈天平.Sigma-Pi神经网络中的逼近问题[J].科学通报,1996,41(8):683-684. 被引量:4
  • 2程乾生.属性识别理论模型及其应用[J].北京大学学报(自然科学版),1997,33(1):12-20. 被引量:571
  • 3World Health Organization. Global status report on road safety: Time for action[M] Geneva.. WHO Press, 2009.
  • 4World Health Organization. Global status report on road safety: Supporting a decade of action[M]. Ge- neva~ WHO Press. 2013.
  • 5Murata K, Fujita E, Kojima S, et al. Noninvasive biological sensor system for detection of drunk driving [J], IEEE Transactions on Information Technology in Biomedicine, 2011, 15(1) :19-25.
  • 6Sakairi M, Suzuki D, Nishimura A, et al. Simulta- neous detection of breath and alcohol using breath-al-cohol sensor for prevention of drunk driving [J ]. IEICE Electronics Express, 2010, 7(6) ..467 472.
  • 7Koukiou G, Panagopoulos G, Anastassopoulos V. Drunk person identification using thermal infrared im- ages[C]// Processing of the 16th International Confer- ence on Digital Signal. Santorini, Greecea: IEEE Press, 2009: 4-6.
  • 8Bear M F, Connors t3 W, Paradiso M A. Neuro- science: Exploring the Brain 3rd edition[M]. USA: Lippincott Williams ~ Wilkins Press, 2007.
  • 9Papadelis S C, Chen Z, Papadeli C K. Monitoring sleepiness with on-board electrophysiologieal record- ings for preventing sleep-deprived traffic accidents [J]. Clinical Neurophysiology, 2007, 118 (09) : 1906 1922.
  • 10Wu D, ChenZ H, Feng R F, etal. Study on human brain after consuming alcohol based on EEG signal [C] // Proceedings of the 3rd International Conference on Computer Science and Information Technology. Bangalore India: IEEE Press, 2010: 406-409.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部