期刊文献+

温度对木质纤维素水解与挥发性脂肪酸累积的影响 被引量:2

Effect of temperature on lignocellulosic wastes hydrolysis and volatile fatty acids accumulation
原文传递
导出
摘要 木质纤维素厌氧消化过程产生的挥发性脂肪酸(VFAs)可作为外加碳源投加到人工湿地,解决人工湿地反硝化碳源不足的问题,但温度对木质纤维素厌氧消化生产VFAs过程的影响还有待深入探明。考察上述木质纤维素厌氧消化过程中有机碳源、糖与VFAs的变化规律,试图探明温度(10-55℃)对木质纤维素水解与VFAs累积的影响。研究结果表明,温度升高对木质纤维素的水解具有促进作用,对VFAs产量的影响显著。35℃时是生物质发酵产酸的最优条件,VFAs累积量不仅最早(第10天)达到最高值154mgCOD/g生物质,而且碳源的数量和品质均达到较高的水平。 Despite that volatile fatty acids (VFAs) produced in the anaerobic digestion process of lignocel- lulosic wastes can be used as external carbon source to enhance the denitrification efficiency in constructed wet- lands, the effects of temperature on producing VFAs using lignocellulosic wastes as raw material remain unclear. In this work, the variation of organic carbon sources, sugar and VFAs during the fermentation process of lignocel- lulosic wastes was examined to explore the effects of temperature (10 -55℃ ) on lignocellulosic wastes hydrolysis and VFAs accumulation. The results showed that the hydrolysis of lignocellulosic wastes was accelerated and the production of VFAs changed significantly as the temperature increased. At 35℃ , the accumulation of VFAs reached the maximum value of 154 mg COD/g biomass at the soonest ( 10 d) , and both the quantity and quality of the carbon sources achieved a higher level. So, 35℃ could be considered as the optimal conditions for VFAs accumulation in this study.
出处 《环境工程学报》 CAS CSCD 北大核心 2013年第10期3807-3812,共6页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(51378372) 同济大学"中央高校基本科研业务费专项资金"项目(0400219194)
关键词 木质纤维素 水解 挥发性脂肪酸(VFAs) 温度 lignocellulose hydrolysis volatile fatty acids (VFAs) temperature
  • 相关文献

参考文献19

  • 1Hammer D. A. , Knight R.L. Designing constructed wet- lands for nitrogen removal. Water Science and Technology, 1994,29(4) : 15-27.
  • 2Osamu K., Carl H. W. Biomass Handbook. Gordon Breach Science Publisher, 1989.
  • 3FanY. T. , Zhang Y. H. , Zhang S. F. , et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology, 2006,97 (3) : 500-505.
  • 4Delaune R. D., Jugsujinda A., Reddy K. R. Effect of root oxygen stress on phosphorus uptake by cattail. Journal of Plant Nutrition, 1999,22 ( 3 ) :459-466.
  • 5Yavitt J. B. , Knapp A. K. Aspects of methane flow from sediment through emergent cattail ( Typha latifolia) plants. New Phytologist, 1998,139 ( 3 ) :495-503.
  • 6Gajalakshmi E. V. , Ramasamy E. V. , Abbasi S. A. As- sessment of sustainable vermiconversion of water hyacinth at different reactor efficiencies employing Eudrilus eugeniae Kinberg. Bioresouree Technology, 2001,80 ( 2 ) : 131-135.
  • 7Vymazal J. , Krfipfelov6 L. Wastewater Treatment in Con- structed Wetlands with Horizontal Sub-surface Flow. Neth- erlands: Springer, 2010.
  • 8Elefsiniotis P. , Wareham D. G. Utilization patterns of vol- atile fatty acids in the dcnitrification reaction. Enzyme and Microbial Technology, 2007,41 ( 1-2 ) : 92-97.
  • 9Chandra R. , Takeuchi H. , Hasegawa T. Methane produc- tion from lignocellulosic agricuhural crop wastes: A review in context to second generation of biofuel production. Re- newable and Sustainable Energy Review, 2012, 16 (3): 1462-1476.
  • 10Ren N. Q. , Wang A. J. , Cao G. L. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 2008, 99 ( 17 ) :7928-7940.

同被引文献35

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部