期刊文献+

电混凝处理电镀综合废水 被引量:10

Treatment of electroplating wastewater by electrocoagulation
原文传递
导出
摘要 采用电混凝法处理酸性电镀综合废水,首先研究了不同电流密度对总氰化物、重金属和化学需氧量(COD)去除率的影响。实验结果表明,电混凝可有效去除酸性电镀综合废水中的氰化物与重金属。随着电流密度的增大,总氰化物与重金属的去除率逐渐提高。当电流密度为10 mA/cm2时,废水中残留的总氰化物、Cu2+、Ni2+、Cr6+和Zn2+的浓度分别为23.0、25.0、4.5、0.2和0.2 mg/L。为了进一步提高去除率,在电化学体系中添加H2O2,随着H2O2投量的增大,总氰化物、重金属、COD去除率不断提高。当H2O2投量为3 mL/L时,处理过废水中残留总氰化物、Cu2+、Ni2+、Cr6+、Zn2+和COD的浓度分别为0.2、2.0、3.0、1.5、0.1和220 mg/L。 Treatment of an acid electroplating wastewater was performed by an electrocoagulation process firstly. Effect of current density and treatment time on the removal of total cyanide, heavy metals and COD was in- vestigated. The results showed that total cyanide and heavy metals can be efficiently removed by the electrocoagula- tion process, which increased with the current density. At a current density of 10 mA/cm2 , the residual total cya- nide, Cu2 + , Ni2+ , Cr6 + and Zn2 + were 23.0, 25.0, 4.5, 0.2 and 0.2 mg/L, respectively. Removal of COD by electrocoagulation process was limited. With addition of H2O2 to electrochemical system, the removal efficiency of the total cyanide and heavy metal and COD increased. With a H2O2 dose of 3 mL/L, the residual total cyanide, Cu2+ , Ni2+ , Cr6+ , Zn2+ and COD were 0.2, 2.0, 3.0, 1.5, 0.1 and 220 mg/L, respectively.
出处 《环境工程学报》 CAS CSCD 北大核心 2013年第10期3833-3838,共6页 Chinese Journal of Environmental Engineering
基金 国家自然科学基金资助项目(51222802 21377148)
关键词 电镀综合废水 氰化物 重金属 电混凝 electroplating wastewater cyanide heavy metal electrocoagulation
  • 相关文献

参考文献13

  • 1Park E. , Jung J. , Chung H. H. Simultaneous oxidation of EDTA and reduction of metal ions in mixed Cu ( II )/Fe ( BI )-EDTA system by TiO2 photocatalysis. Chemosphere, 2006,64 ( 3 ) :432-436.
  • 2马小隆,刘晓东,周广柱.电镀废水处理存在的问题及解决方案[J].山东科技大学学报(自然科学版),2005,24(1):107-111. 被引量:52
  • 3Kurniawan T. A. , Chan G. Y. S., Lo W. H. , et al. Physic-chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 2006, 118(1/2) :83-98.
  • 4冯彬,张利民.电镀重金属废水治理技术研究现状及展望[J].江苏环境科技,2004,17(3):38-40. 被引量:46
  • 5Heidmann I. , Calmano W. Removal of Zn( I] ) , Cu( 11 ) , Ni( 1I ), Ag( I ) and Cr( VI ) present in aqueous solutions by aluminium electrocoagulation. Journal of Hazardous Ma- terials, 2008,152 ( 3 ) :934-941.
  • 6Moussavi G. , Majidi F. , Farzadkia M. The influence of operational parameters on elimination of cyanide from wastewater using the electrocoagulation process. Desalina- tion, 2011,280(1-3) :127-133.
  • 7Chen G., Chen X., Yue P. L. Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environ- mental Engineering, 2000,126 ( 9 ) :858-863.
  • 8Zhao X. , Zhang B. F. , Liu H. J. , et al. Transformation characteristics of refractory pollutants in plugboard wastewater by an optimal electrocoagulation and electro- Fenton process. Chemosphere, 2012,87 (6) :631-636.
  • 9Zongo I. , Maiga A. H. , W6th6 J. , et al. Electrocoagula- tion for the treatment of textile wastewaters with A1 or Fe electrodes: Compared variations of COD levels, turbidity and absorbance. Journal of Hazardous Materials, 2009, 169( 1-3 ) :70-76.
  • 10国家环境保护总局 水和废水监测分析方法编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002.210-213.

二级参考文献27

共引文献491

同被引文献143

引证文献10

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部