期刊文献+

基于信息融合和改进UGM(1,1)模型的故障预测 被引量:5

Fault prediction based on information fusion and improved UGM(1,1)model
下载PDF
导出
摘要 针对故障预测中存在数据采样时间间隔不均匀、采样难度大、数据量小等问题,借鉴信息融合技术和灰色预测理论,提出了一种基于信息融合和改进不等时距灰色模型(improved unequal interval grey model,IUGM)的预测方法。首先,运用一元二次非线性回归思想建立不等时距灰色预测模型,并通过初始值改进、残差修正和新陈代谢相结合的方式对模型进行改进;然后基于加权思想提出隶属度加权法,以确定特定个体和同类产品的隶属度权值;最后基于加权思想和IUGM(1,1)模型建立特定个体的故障预测模型。实例仿真验证了所提方法的有效性。 In view of the problems of unequal date sampling time interval, the great difficulty of date sa pling and the small date capacity in fault prediction, a prediction method based on information fusion and im proved unequal interval grey model (IUGM) according to information fusion technical and grey prediction theory is poposed. Firstly, unequal interval grey model is built by nonlinear regression idea and optimized by initial val ue improved, residual error correction and metabolism. Then the degree of membership weighted method is put forward based on weighted thought so as to determine degree of membership value of models. Finally, the fault prediction model of special individuality is built on the basis of degree of membership value and IUGM (1,1) model. The results of simulating example validate the validitv of the nrooosed method.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第10期2135-2140,共6页 Systems Engineering and Electronics
基金 军队科研项目资助课题
关键词 故障预测 非线性回归 灰色模型 不等时距灰色模型 信息融合 fault prediction nonlinear regression grey model (GM) unequal interval GM (UGM) information fusion
  • 相关文献

参考文献5

二级参考文献27

  • 1郭风,李登科,张恒喜,孟科.军用无人机研制费用的RBF神经网络预测[J].电光与控制,2005,12(6):60-62. 被引量:5
  • 2王玲玲 周纪芗.常用统计方法[M].华东师范大学出版社,1998..
  • 3Wang Huiwen, Liu Qiang, Tu Yongping. Interpretation of partial least-squares regression models with VARIMAX rotation [J]. Computational Statistics & Data Analysis, 2005,48 ( 1 ) : 207 - 219.
  • 4Nguyen D V,David D M, Rocke M. On partial least squares dimension reduction for microarray-based classification:a simulation study[J]. Computational Statistics & Data Analysis,2004, 46 ( 3 ) :407 - 425.
  • 5Longstaff F A, Schwartz E S. Valuing American options by simulation : a simple least-squares approach [J].The Review of Financial Studies,2001 , 14 ( 1 ) : 113 - 147.
  • 6Zamprogna E, Barolo M, Seborg D E. Estimating product composition profiles in batch distillation via partial least squares regression[J]. Control Engineering Practice,2004,12(7) :917 -929.
  • 7Gebraeel N Z, Elwany A, Pan J. Residual life predictions in the absence of prior degradation knowledge [J]. IEEE Transactions on Reliability, 2009, 58 (1) : 106-117.
  • 8Xu Z G, Ji Y D, Zhou D H. Real-time reliability prediction for a dynamic system based on the hidden degradation process identification[J]. IEEE Transactions on Reliability, 2008, 57(2): 230-242.
  • 9Gebraeel N Z, Lawley M A. A neural network degradation model for computing and updating residual life distributions[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(1): 154-163.
  • 10Si Xiao-sheng, Wang Wen-bin, Hu Chang-hua, et al. Remaining useful life estimation: A review on the statistical data driven approaches[J]. European Journal of Operational Research, 2011, 213(1) : 1- 14.

共引文献126

同被引文献71

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部