期刊文献+

高效的联合卷积DQPSK编码调制方法 被引量:2

Efficient joint convolutional code-coded DQPSK method
下载PDF
导出
摘要 在数字通信中,90°或者180°的相位模糊是影响正交相位偏移键控(quadrature phase shift keying,QPSK)相干接收机性能的重要因素。差分正交相位偏移键控(differential QPSK,DQPSK)可以克服相位模糊,但是会导致约2.3dB的性能损失。为了消除DQPSK的性能损失,提出一种低复杂度的基于迭代译码的联合卷积DQPSK编码调制方法,并且基于外信息转移图,提出了一种在DQPSK调制下优化卷积码生成多项式的算法。仿真结果表明,所提差分编码方案不仅可以克服相位模糊,而且通过迭代译码完全补偿了差分编码所导致的差分代价损失,甚至获得了3.5dB的性能增益。优化后的卷积码与IEEE 802.11n协议中给定的卷积码相比,获得了大约0.3dB的信噪比增益,和第3代合作伙伴计划(3rd generation partnership project,3GPP)长期演进(long term evolution,LTE)协议中的Turbo码相比,有大约1.1dB的性能增益。 In digital communications, 90° or 180° phase ambiguity between the receiver and transmitter car rier is a serious problem for the coherent demodulation. To remove their phase ambiguity, differential quadra ture phase shift keying (DQPSK) is proposed at the cost of a remarkable 2. 3 dB performance degradation. Based on the iterative decoding (ID) scheme, an efficient joint convolutional code (CC)coded DQPSK method is proposed to close the gap between quadrature phase shift keying (QPSK) and DQPSK. Using the extrinsic in formation transfer (EXIT) chart technique, the generator polynomial of the convolutional code is optimized. Simulation results show out that the proposed differential encoding method can overcome the phase ambiguity, and achieve a 3. 5 dB signalto noise ratio (SNR) per bit gain compared with the CCQPSK scheme by ID. Through optimization algorithm, the CC with an optimized generator polynomials outperforms the CC used in IEEE 802. lln protocol by 0.3 dB, and by 1. I dB compared with the Turbo code in the 3rd generation partner ship project long term evolution (3GPP LTE) protocol.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2013年第10期2192-2197,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(61171101) 国家重大科技专项(2009ZX03003-011-03) 华为公司研究基金资助课题
关键词 迭代译码 差分正交相位偏移键控 卷积码 外信息转移图 Turbo码 最大后验概率算法 iterative decoding differential quadrature phase shift keying (I)QPSK) convolutional code (CC) extrinsic information transfer (EXIT) chart Turbo code maximum posteriori probability (MAP) algorithm
  • 相关文献

参考文献17

  • 1Hoeher P, Lodge J. Turbo DPSK: iterative differential PSK de- modulation and channel decoding[J]. IEEE Trans. on Commu- nications, 1999, 47(6): 837-843.
  • 2齐刚,杨燕翔.基于DSP的QPSK调制的设计与实现[J].电子设计工程,2009,17(1):26-27. 被引量:8
  • 3侯玉杰.基于AD9910的QPSK调制技术[J].煤炭技术,2011,30(11):154-155. 被引量:1
  • 4Kuschnerov M, Calabro S, Piyawanno K, et al. Low complexity soft differential decoding of QPSK for forward error correction in coherent optic receivers[C]//Proc, of the 36th European Con- ference and Exhibition on Optical Communication, 2010:1 -3.
  • 5Weber W J. Differential encoding for multiple amplitude and phase shift keying systems[J]. IEEE Trans. on Communica- tions, 1978, 26(3): 385-391.
  • 6Narayanan K R, Stuber G L. A serial concatenation approach to iterative demodulation and decoding[J]. IEEE Trans. on Com- munications, 1999, 47(7): 956-961.
  • 7Wei R Y. Differential encoding by a look-up table for quadrature amplitude modulation [J]. IEEE Trans. on Communications, 2011, 59(1): 84-94.
  • 8Henkel W. Conditions for 90° phase-invariant block coded QAM[J]. IEEE Trans. on Communications, 1993, 41(4) : 524 - 527.
  • 9Brink S T. Convergence behavior of iteratively decoded parallelconcatenated codes [ J ]. IEEE Trans. on Communications, 2001, 49(10): 1727-1737.
  • 10Babich F, Crismani A, Maunder R G. EXIT chart aided design of periodically punctured Turbo codes[J]. Electronics Letters, 2010, 46(14): 1001-1003.

二级参考文献4

共引文献7

同被引文献21

  • 1常萌,申敏.16QAM解调算法及其在HSDPA中的应用[J].信息通信,2006,19(2):53-56. 被引量:7
  • 2Ahlswede R, Cai N, Yeung R W. Network information flow[J]. IEEE Trans. on Inbrmation Theory, 2000, 46(4) : 1204 - 1216.
  • 3Chen Y D, Kishore S, Li J. Wireless diversity through network coding[C]//Proc, of the IEEE Wireless Communication and Networking Conference, 2006:1681 - 1686.
  • 4Yeung R W, Li S Y R, Cai N, et al. Network coding theory[M]. USA: Now Publishers, 2005.
  • 5Woldegebreal D H, Karl H. Multiple-access relay channel with network coding and non ideal source-relay channels[C]//Proc. of the 4th IEEE International Symposium on Wireless Commu nication Systems, 2007:732 - 736.
  • 6Hernaez M, Crespo P M, De Ser J. Joint non-binary LDPC BICM and network coding with iterative decoding for the multi- ple access relay channel[C]//Proc, of the 73rd IEEE Vehicular Technology Conference, 2011:1-5.
  • 7Wei S, Li J, Chen W, et al. Wireless adaptive network coding strategy in multiple access relay channels [C] // Proc. of the IEEE International Conference on Comnunications, 2012:4589 - 4594.
  • 8Ding Y, Li G. Multiple-access relay channel with direct network coding[C]//Proc, of the 14th IEEE International Conference on Communication Technology, 2012:1113 - 1117.
  • 9Brink S T. Convergence behavior of iteratively decoded parallelconcatenated codes[J]. IEEE Trans. on Communications, 2001, 49(10) : 1727 - 1737.
  • 10Babich F, Crismani A, Maunder R G. EXIT chart aided design of periodically punctured Turbo codes[J]. Electronics Letters, 2010, 46(14) : 1001 - 1003.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部