期刊文献+

基于数值计算的切割焊接连续加工残余应力演变过程 被引量:3

Residual stresses evolutions of cutting and welding sequential process based on numerical simulation
下载PDF
导出
摘要 热切割与焊接在船舶制造中以先后顺序连续作用于构件,形成复杂的工艺耦合残余应力场,给掌握船体结构残余应力分布带来困难。为此,以典型的平板结构切割成形后对接焊工艺过程为对象,基于热弹塑性有限元法,建立该过程的数值计算模型,分析切、焊耦合残余应力的分布规律与演变过程。结果表明,在切焊连续加工中,沿焊缝边缘存在超过材料屈服点的拉应力区,其宽度大于单独进行切割或焊接工艺时的情况;距焊缝较远位置的应力不仅受其温度升降影响,还要平衡热源周围的压应力,因此率先呈现出渐增的拉应力;初始切割残余应力对最终耦合残余应力的影响取决于温度变化梯度的大小。 Thermal cutting and welding usually act on components orderly in shipbuilding,and the coupled residual stresses with complex distribution was induced during this process,which led to difficulty in analyzing the residual stresses distribution.To tackle this problem,the numerical calculation model for the typical process that butt welding between two plates cut by oxygen flame was studied based on thermal elastic-plastic finite element method.The distribution and evolution of coupled residual stresses were analyzed.The results demonstrated that there was a region that the tensile stress values exceeded the yield point of material along the weld seam,and the width of this region was higher than those of cutting and welding execution respectively.The stresses with longer distance away from the weld seam were not only influenced by the temperature itself,but also the compressive stresses induced by welding heat source,so it appeared as the increasing tensile stresses,and the influence of initial cutting residual stresses on the final coupled residual stresses depended on the gradient magnitude of temperature.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2013年第9期2244-2250,共7页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(50805016)~~
关键词 切割 焊接 连续加工 耦合残余应力 应力演变 数值模拟 cutting welding sequential process coupled residual stresses stress evolution numerical simulation
  • 相关文献

参考文献11

  • 1MOCHIZUKI M, HAYASHI M, HATTORI T. Residual stress distribution depending on welding sequence in multi- pass welded joints with x-shaped groove[J].Journal of Pres- sure Vessel Technology, 2000,122(1): 27-32.
  • 2BARSOUM Z.. Residual stress analysis and fatigue of multi-pass welded tubular structures[J]. Engineering Failure Analy- sis, 2008, 15(7): 863-874.
  • 3LIU C, ZHANG J X, XUE J B. Numerical investigation on residual stress distribution and evolution during multipass nar- row gap welding of thick-walled stainless steel pipes [J]. Fu- sion Engineering and Design, 2011, 86(4/5): 288-295.
  • 4HEINZE C, SCHWENK C, RETHMEIER M. Numerical cal- culation of residual stress development of multi-pass gas metal arc welding[J]. Journal of Constructional Steel Research, 2012, 72: 12-19.
  • 5DATTOMA V, GIORGI M D, NOBILE R. On the evolution of welding residual stress after milling and cutting machine[J]. Computers & Structures, 2006, 84(29/30): 1965-1976.
  • 6DONG P, CAHILI P, YANG Z, et al. Plate residual stress effects on dimensional accuracy in thermal cutting[J]. Journal of Ship Production, 2004, 20(4): 245-255.
  • 7DENG De'an, KIYOSHIMA S. Numerical simulation of resid- ual stresses induced by laser beam welding in a SUS316 stain- less steel pipe with considering initial residual stress influences [J]. Nuclear Engineering and Design, 2010, 240 (4): 688-696.
  • 8BIRK-SRENSEN M. Simulation of welding distortions in ship section [D]. Odense, Denmark: Technical University of Den- mark, 1999.. 95-96.
  • 9ZHOU Bo, LIU Yujun, JI Zhuoshuang. Numerical and exper- imental investigations on temperature and stress distribution in oxygen cutting[J]. Journal of Ship Production, 2009, 25(1) : 14-20.
  • 10拉达伊D焊接热效应:温度场,残余应力,变形[M].北京:机械工业出版社,1997:26-29,142-145.

同被引文献28

  • 1虞付进,赵燕伟,张克华.超声检测表面残余应力的研究与发展[J].表面技术,2007,36(4):72-75. 被引量:19
  • 2武传松.焊接热过程与熔池形态[M].北京:机械工业出版社,2007.
  • 3李午申,唐伯钢.中国钢材、焊接性与焊接材料发展及需要关注的问题[c]//第十二次全国焊接学术会议论文集.北京:机械工业出版社,2008:1-12.
  • 4GON:ALVES C V, CARVALHO S R, GUIMARAES G, et al. Application of optimization techniques and the enthalpy method to solve a 3D-inverse problem during a TIG welding process[J]. Applied Thermal Engineering, 2010,30(16) : 2396- 2402.
  • 5DEY V, PRATIHAR D K, DATTA G L, et al. Optimization of bead geometry in electron beam welding using a genetic al- gorithm[J]. Journal of Materials Processing Technology, 2009, 209: 1151-1157. DOI: 10. 1016/j. jmatproter. 2008. 03. 019.
  • 6ISLAM M, BUIJK A, RAIS-ROHANI M, et al. Simulation- based numerical optimization of arc welding process for reduced distortion in welded structures[J]. Finite Elements in Analysis and Design, 2014,84 : 54-64.
  • 7FENG Jiecai, LI Liqun, CHEN Yanbin, et al. Effects of wel- ding velocity on the impact behavior of droplets in gas metal arc weldingEJ]. Journal of Materials Processing Technology, 2012,212(11) :2163-2172.
  • 8KUMAR N, RUDRAPATI R, PAL P K. Multi-objective op- timization in through laser transmission welding of thermoplas- tics using grey-based taguchi method[J]. Procedia Materials Science, 2014(5) :2178-2187.
  • 9KHAN M M A, ROMOLI L energy-based model for laser DINI G, et al. A simplified welding of ferritic stainless steels in overlap configurations[J]. CIRP Annals-Manufactur- ing Technology, 2011,60(1) : 215-218.
  • 10LIU Liming, HAO Xin:eng, SONG Gang. A new laser arc hybrid welding technique based on energy conservation[J]. Materials Transactions,2006,47(6) :1611-1614.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部