期刊文献+

聚苯胺/铁氰化镍纳米复合颗粒的制备及电控分离Cd的EQCM研究 被引量:1

Synthesis of PANI/NiHCF Nanocomposite Particles and EQCM Measurement of Ion Exchange Properties in Solutions Containing Cd^(2+)
下载PDF
导出
摘要 本文采用循环伏安一步共聚法在碳纳米管(CNTs)修饰的铂基底上制备了聚苯胺/铁氰化镍(PANI/NiHCF)纳米复合颗粒.通过电化学石英晶体微天平(EQCM)技术检测了复合颗粒制备过程的质量改变量,并用扫描电镜(SEM)、透射电镜(TEM)和傅立叶变换红外光谱(FTIR)分析了复合颗粒的微观形貌和组成.结合循环伏安法和EDS能谱考察了该复合电极对Cd2+离子的交换性能.结果表明,三维多孔的CNTs不仅可促进复合颗粒的沉积,而且其独特的网络结构和表面特性对形成PANI/NiHCF复合颗粒的立方体构型起至关重要的作用.该复合电极在0.1mol·L-1Cd(NO3)2溶液中显示了良好的电活性,对Cd2+离子有可逆的离子交换性能,通过电控离子交换法可实现废水中Cd2+离子的高效分离. The PANI/NiHCF nanocomposite particles were synthesized on the CNTs-modified Pt substrate by one-step co-polymerization using cyclic voltammetry. Electrochemical quartz crystal microbalance (EQCM) technique was adopted to investigate the polymerization process of the nanocomposite particles and the mechanism of ion exchange in aqueous solution containing Cd2+. The morphology and structure of the as-prepared composite particles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FTIR). Combined with cyclic voltammetry (CV) and energy dispersive spectroscopy (EDS), the electrochemical behavior and the mechanism of ion exchange was also investigated in electrolytes of Cd2+. Experimental results indicated that the cubic nanocomposite particles of PANI/NiHCF were formed and distributed uniformly on the CNTs substrate. The particles exhibited good electroactivity and reversible electrochemical behavior in aqueous solution containing Cd2+, and the Cd2+ ions could be separated from aqueous solutions by ESIX processes.
出处 《电化学》 CAS CSCD 北大核心 2013年第5期493-498,共6页 Journal of Electrochemistry
基金 国家自然科学基金项目(No.21276173) 山西省自然科学基金项目(No.2012011020-5 No.2012011006-1) 山西省国际科技合作计划项目(No.2011081028)资助
关键词 聚苯胺 铁氰化镍 多壁碳纳米管 复合颗粒 电化学共聚 电控离子交换 polyaniline nickel hexacyanoferrate multi-walled carbon nanotubes composite particles electrochemicalco-polymerization Cd electrochemically switched ion exchange
  • 相关文献

参考文献21

  • 1Lilga M A, Orth R J, Sukamto J P H, et al. Metal ion sepa- rations using electrically switched ion exchange[J]. Sepa- ration and Purification Technology, 1997, 11(3): 147-158.
  • 2Kulesza P J, Miecznikowski K, Malik M A, et al. Electro- chemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer[J]. Electrochimica Acta, 2001, 46 (26/27): 4065-4073.
  • 3Lin Y, Cui X. Novel hybrid materials with high stability for electrically switched ion exchange: Carbon nan- otube-polyaniline-nickel hexacyanoferrate nanoeompos- ites[J]. Chemical Communications, 2005, 17: 2226-2228.
  • 4Pahal S, Deepa M, Bhandari S, et al. Electrochromism and redox switching of cobalt hexacyanoferrate-polyaniline hybrid films in a hydrophobic ionic liquid[J]. Solar Energy Materials and Solar Cells, 2010, 94(6): 1064-1075.
  • 5Chen X, Chen Z, Tian R, et al. Glucose biosensor based on three dimensional ordered macroporous self-doped polyaniline/Prussian blue bicomponent film[J]. Analytica Chimica Acta, 2012, 723(0): 94-100.
  • 6臧杨,郝晓刚,王忠德,张忠林,刘世斌.碳纳米管/聚苯胺/铁氰化镍复合膜的电化学共聚制备与电容性能[J].物理化学学报,2010,26(2):291-298. 被引量:12
  • 7Huang W S, Humphrey B D, MacDiarmid A G. Polyani-line, a novel conducting polymer. Morphology and chem- istry of its oxidation and reduction in aqueous electrolytes [J]. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1986, 82(8): 2385-2400.
  • 8Wang Z, Sun S, Hao X, et al. A facile electrosynthesis method for the controllable preparation of electroactive nickel hexacyanoferrate/polyaniline hybrid films for H20: detection[J]. Sensors and Actuators B: Chemical, 2012, 171-172: 1073-1080.
  • 9Lin Y, Cui X. Electrosynthesis, characterization, and appli- cation of novel hybrid materials based on carbon nan- otube-polyaniline-nickel hexacyanoferrate nanocompos- ites[J]. Journal of Materials Chemistry, 2006, 16(6): 585- 592.
  • 10Yu H, He J, Sun L, et al. Influence of the electrochemical reduction process on the performance of graphene-based capacitors[J]. Carbon, 2013, 51(1): 94-101.

二级参考文献13

共引文献14

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部