期刊文献+

基于格子Boltzmann方法的超声速非平衡流模拟

Supersonic Non-equilibrium Flow Simulation Based on Lattice Boltzmann Method
下载PDF
导出
摘要 基于D1Q4可压缩格子Boltzmann模型,按照流通矢量分裂方法的思路,采用坐标旋转技术构造求解三维带化学反应Navier-Stokes方程对流通量求解器.结合有限体积法求解三维化学非平衡流Navier-Stokes方程,采用时间算子分裂算法解决化学反应刚性问题,数值模拟超声速化学非平衡流的三个经典算例.数值结果表明:在高马赫数下,采用D1Q4可压缩格子Boltzmann模型构造的三维对流通量求解器数值模拟中没有出现非物理解,同时在超声速化学非平衡流场中正确分辨激波、燃烧波等物理现象,精度和分辨率均较高,验证了本文构造的三维对流通量求解器的可靠性,拓宽了D1Q4可压缩格子Boltzmann模型的应用范围,为计算超声速化学非平衡流提供一种新方法. With ideas of vector splitting method and technique of coordinate rotation, a D1 Q4 compressible lattice Boltzmann model is used to construct convection flux solvers of 3D Navier-Stokes equations with chemical reactions. Three-dimensional chemical non- equilibrium flow is solved by finite volume method of Navier-Stokes equations. A time-splitting method is applied to resolve stiff problem in computation of chemical reaction flows. Three classic examples of supersonic chemical non-equilibrium flows are simulated. It shows that: At high Mach numbers, numerical simulation using three-dimensional convection flux solvers based on D1 Q4 model has no non-physical solution, and can distinguish physical phenomena such as shock, combustion wave in chemical non-equilibrium flow field. Accuracy and resolution are high,which verifys reliability of the three-dimensional convection flux solver. It broadens application of D1 Q4 model, and offers a new method for calculation of hypersonic chemical non-equilibrium flows.
出处 《计算物理》 CSCD 北大核心 2013年第5期659-666,共8页 Chinese Journal of Computational Physics
关键词 格子BOLTZMANN方法 D1Q4模型 NAVIER-STOKES方程 化学非平衡流 Lattice Boltzmann method D1 Q4 model 3D Navier-Stokcs equations chemical non-equilibrium flow
  • 相关文献

参考文献13

  • 1Aidun C K, Clausen J R. Lattice Bohzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010,42:439 -472.
  • 2Chen S, Doolen G D. Lattice Bohzmann method for fluid flows [ J ]. Annual Review of Fluid Mechanics, 1998, 30:329 - 364.
  • 3Qu K, Shu C, Chew Y. Alternative method to construct equilibrium distribution function in lattice-Boltzmann method simulation of invisid compressible flows at high Mach number[ J]. Physical Review E, 2007, 75 (3) :36706.
  • 4Kataoka T, Tsutahara M. Lattice Boltzmann method for the compressible Euler equations[ J]. Physical Review E, 2004, 69 (51) :056702.
  • 5Sun C, Hsu A T. Three-dimensional lattice Boltzmann model for compressible flows[ J]. Physical Review E, 2003, 68 (1) : 16303.
  • 6Qu K, Shu C, Cai J. Developing LBM-based flux solver and its applications in multi-dimension simulations [C]// International Journal of Modern Physics : Conference Series, 2012,19:90 - 99.
  • 7汤华中,邬华谟.高分辨KFVS有限体积方法及其CFD应用[J].计算数学,1999,21(3):375-384. 被引量:6
  • 8Prak C, Yoon S. Caluclation of real-gas effects on blunt-body trim angles[ J ]. AIAA Journal, 1992, 30 (4) : 186 - 195.
  • 9胡湘渝,张德良,姜宗林.气相爆轰基元反应模型数值模拟[J].空气动力学学报,2003,21(1):59-66. 被引量:10
  • 10Lehr H F. Experiments on shock-induced combustion[ J]. Aeronautica Acta, 1972,17:589 -597.

二级参考文献22

  • 1汤华中,戴嘉尊.Euler方程的动力学通矢量分裂格式[J].南京航空航天大学学报,1996,28(4):476-480. 被引量:2
  • 2[1]HARTEN R J. High resolution schemes for hyperbolic conservation laws[J]. Journal of Computational Physics, 1983, 49:231-303.
  • 3[2]GODUNOV S K. Finite difference method for numerical computational of discontinuous solutions of the equation of fluid dynamics[J]. Matematicheskii Sbornik, 1959, 47:271-306.
  • 4[3]VAN LEER B. Toward the ultimate conservative difference scheme: a second-order scheme to Godunov's method[J]. Journal of Computational Physics, 1979, 32:101-136.
  • 5[4]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes I[J]. Journal of Computational Physics, 1988, 77:439-471.
  • 6[5]SHU W C, Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes II[J]. Journal of Computational Physics, 1989, 83:32-78.
  • 7[6]SCHOFFEL S U, Ebert F. Numerical analysis concerning the spatial dynamics of an initially plane gaseous ZND detonation[J]. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1988,114:3-31.
  • 8[7]GAKI S, FUJIWARA T. Numerical analysis of two-dimensional nonsteady detonations[J]. AIAA Journal ,1978, 16:73-77.
  • 9[8]LEFEBVRE M H. Simulation of cellular structure in a detonation wave. Shock Waves, Explosions and Detonations, Prog. in Astro. and Aero., 1991,153:64-77.
  • 10[9]STULL D R. JANAF thermochemical tables, National standard reference data series[M]. U. S. National, Breau of Standards No. 37. 2nd Ed. Gaithersberg Press, Maryland, 1971.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部