期刊文献+

一种基于稀疏表示的交通图像去噪算法 被引量:1

A Traffic Image Denoising Algorithm Based on Sparse Representation
下载PDF
导出
摘要 将图像稀疏表示方法引入到交通图像处理中,实现了一种基于K-SVD的正交匹配追踪的交通图像去噪算法.该算法通过奇异值分解,DCT字典进行自适应更新,形成更能表示图像结构的超完备字典.实验结果表明,相对于传统图像增强方法(中值滤波、均值滤波、基于小波滤波)和基于DCT冗余字典的稀疏表示图像增强方法,该算法能更有效地去除交通图像噪声,得到更高的峰值信噪比. Image sparse representation method is introduced to process traffic image, and a orthogonal matc- hing pursuit traffic image denoising algorithm is proposed based on K-SVD. The algorithm uses singular value decomposition, so that the DCT dictionary is adaptively updated, forming a over-complete dictionary which can represent the image structure more better. The experiments show that, compared to the traditional image de- noising (median filtering, mean filtering and wavelet filtering) and sparse representation image denoising based on DCT redundant dictionary, this algorithm can remove more effectively the traffic image noise throuh image enhancement and obtain higher signal-to-noise ratio of the peak.
出处 《大连交通大学学报》 CAS 2013年第5期107-111,共5页 Journal of Dalian Jiaotong University
关键词 交通图像 稀疏表示 图像去噪 峰值信噪比 traffic image sparse representation image denoising PSNR
  • 相关文献

参考文献9

  • 1PANG CCC, LAM WW L, YUNG N H C. A method for vehicle count in the presence of multiple vehicle occlu- sions in traffic images[J]. IEEE Transactions on Intelli- gent Transportation Systems, 2007, 8 (3) : 441-459.
  • 2尹忠科,解梅,王建英.基于稀疏分解的图像去噪[J].电子科技大学学报,2006,35(6):876-878. 被引量:25
  • 3ELAD M,AHARON M. Image denoising via learned dic- tionaries and sparse representation [ J ]. IEEE Computer Vision and Pattern Recognition,2006,1:895-900.
  • 4ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [ J ]. IEEE Trans. Image Process, 2006,15 (12) :3736-3745.
  • 5ELAD M, AHARON M , BRUCKSTEIN A M. The K- SVD : An algorithm for designing of overcomplete diction- aries for sparse representations [ J ]. IEEE Trans. Image Process, 2006,54( 11 ) :4311-4322.
  • 6蔡泽民,赖剑煌.一种基于超完备字典学习的图像去噪方法[J].电子学报,2009,37(2):347-350. 被引量:48
  • 7ELAD M, AHARON M, ZIBULEVSKY M. Improved denoising of images using modeling of the redundant con- tourlet transform[ J ]. SPIE Conf. Wavelets, 2005,12 : 59141.
  • 8章毓晋.图像工程(上册)[M].北京:清华大学出版社.2006.56-58.
  • 9李恒建,张家树,陈怀新.一种快速稀疏分解图像去噪新方法[J].光子学报,2009,38(11):3009-3015. 被引量:5

二级参考文献27

  • 1吴冬梅.基于平移不变小波阈值算法的噪声图象估计[J].光子学报,2005,34(2):306-309. 被引量:24
  • 2杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 3D L Donoho. De-noising by soft thresholding[J]. IEEE Trans on Information Theory, 1995,41 (3) : 613 - 627.
  • 4J Portilla, V Strela, et al. Image de-noising using scale mixtures of Gaussians in the wavelet domain[ J]. IEEE Trans on Image Processing, 2003,12(11) : 1338 - 1351.
  • 5M Elad, M Aharon. Image denoising via sparse and redundant representation over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736 - 3745.
  • 6S G Mallat, Z Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41 (12) :3397 - 3415.
  • 7J Nocedal, S J Wright. Numerical Optimization[M ]. New York: Springer Verlag,2006.
  • 8J Barzilai, J Borwein. Two-point step size gradient methods[J].IMA Journal of Numerical Analysis, 1988, 8 ( 1 ) : 141 - 148.
  • 9ELAD M, AHARON. Image denoising via sparse and redundant representations over learned dictionaries[J]. IEEE trans On Image Processi,zg,2006,15(12) :3736- 3745.
  • 10VENTURA R F, VANDERGHEYNST P, FROSSAED P. Low rate and flexible image coding with redundant representations [J]. IEEE Trans. Image Process ,2006,15(3) :726 -739.

共引文献78

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部