摘要
本文主要研究非参数异方差回归模型的局部多项式估计问题.首先利用局部线性逼近的技巧,得到了回归均值函数的局部极大似然估计.然后,考虑到回归方差函数的非负性,利用局部对数多项式拟合,得到了方差函数的局部多项式估计,保证了估计量的非负性,并证明了估计量的渐近性质.最后,通过对农村居民消费与收入的实证研究,说明了非参数异方差回归模型的局部多项式方法比普通最小二乘估计法的拟合效果更好,并且预测的精度更高.
This paper studied local polynomial estimations for non-parametric heteroscedastic regression models. First- ly, the local maximum likelihood estimation of regression mean function was gained by using local linear fitting. Secondly, con- sidering the positive of regression variance function, its local polynomial estimation was proposed by using local log-polynomial fitting, which guaranteed positive of the local estimation. Furthermore, we verified asymptotic normality of the local estima- tion. Finally, with the real data studies of Chinese rural residents' consumption and income, it shows that the local polynomial method for non-parametric regression models performs better than the least squares method, and has higher accuracy.
出处
《经济数学》
2013年第3期103-106,共4页
Journal of Quantitative Economics
基金
国家自然科学基金资助(71203056)
河南师范大学青年骨干教师培养资助(051)
关键词
非参数回归
异方差
局部多项式拟合
局部极大似然估计
渐近正态性
non-parametric regression
heteroscedastic
local polynomial fitting
local maximum likelihood estimation
asymptotic normality