期刊文献+

基于EEMD与DFA的Hurst指数估计 被引量:4

Estimation of Hurst Index Based on EEMD and DFA
下载PDF
导出
摘要 去趋势波动分析(DFA)是一种研究时间序列长相关幂律特性的简单而有效的方法,其中关键的去趋势步骤就是获取序列在不同时间尺度上的局部波动函数。提出采用整体平均经验模态分解(EEMD)确定局部趋势项,去趋势操作通过移除基于EEMD的局部趋势项完成,从而给出了一种基于EEMD的DFA方法,并将其用于时间序列的Hurst指数估计。采用分形高斯噪声(FGN)和真实网络流量数据的仿真结果表明,该方法具有较好的估计效果,相比于基于EMD的DFA估计法,具有更高的估计精度。 Detrended fluctuation analysis(DFA) is a simple and very efficient method for investigating the pow- er-law long-term correlations of time series, in which a detrending step is necessary to obtain the local fluctua- tions at different timescales. Determining the local trends through ensemble empirical mode decomposition (EEMD) and performing the detrending operation by removing the EEMD-based local trends are introduced, which give an EEMD-based DFA method. The Hurst index of time series is estimated by using the proposed method. Simulation results based on fractional Gaussian noise and real network traffic data reveal that the meth- od has more efficient estimated effects. Compared with the EMD-based DFA method, the proposed method shows more accuracy.
出处 《测控技术》 CSCD 北大核心 2013年第10期98-101,共4页 Measurement & Control Technology
关键词 去趋势波动分析 整体平均经验模态分解 HURST指数 detrended fluctuation analysis ensemble empirical mode decomposition Hurst index
  • 相关文献

参考文献10

  • 1Leland W E, Taqqu M S, Willinger W, et al. On the self- similar nature of Ethernet traffic ( extended version ) [ J ]. IEEE/ACM Transactions on Networking, 1994, 2 ( 1 ) : 1 - 15.
  • 2Taqqu M S, Teverovsky V, Willinger W. Estimators for long-range dependence : An empirical study [ J ]. Fractals, 1995,3 (4) :785 - 798.
  • 3Pacheco J C R, Torres Roman D, Estrada Vargas G. R/S statistic : accuracy and implementations [ C ]//The 18th Inter- national Conference on Electronics, Communications and Computers. 2008 : 17 - 22.
  • 4Barulescu A, Serban C, Maftel C. Evaluation of Hurst expo- nent for precipitation time series[ C]//The 14th WSEAS In- ternational Conference on Computers:Latest Trends on Com- puters( Volume II). 2010:590 - 595.
  • 5Robinson P M. Gaussian semiparametric estimation of long- range dependence [ J ]. The Annals of Statistics, 1995,23 (5) :1630 - 1661.
  • 6Womell G W, Oppenheim A V. Estimation of fractal signals from noisy measurements using wavelets [ J ]. IEEE Trans- actions on signal processing, 1992,40 ( 3 ) :611 - 623.
  • 7Bardet J M, Kammoun I. Asymptotic properties of the de- trended fluctuation analysis of long range-dependence processes [ J ]. IEEE Transactions on Information Theory, 2006,54(5) :1 - 10.
  • 8Weron R. Estimation long-range dependence: finite sample properties and confidence intervals [ J ]. Physica A, 2002, 312( 1 ) :285 -299.
  • 9Qian X Y, Zhou W X, Gu G F. Modified detrended fluctua- tion analysis based on empirical mode decomposition [ J ]. Physica A : Statistical Mechanics and Its Applications ,2011, 390 (23) :4388 - 4395.
  • 10单佩韦,李明.基于EMD的自相似流量Hurst指数估计[J].计算机工程,2008,34(23):128-129. 被引量:8

二级参考文献7

  • 1Leland W E, Wilson D V. High Time-resolution Measurement and Analysis of LAN Traffic: Implications for LAN Interconnection[C]//Proc, of INFOCOM'91, Bal Harbour, Florida, USA: [s. n.], 1991.
  • 2Paxson V, Floyd S. Wide Area Traffic: The Failure of Poison Mocteling[J]. IEEE Trans. on Networking, 1995, 3(3): 226-244.
  • 3Li Ming. Modeling Autocorrelation Functions of Long-range Dependent Teletraffic Series Based on Optimal Approximation in Hilbert Space----A Further Study[J]. Mathematical Modelling, 2007, 31 (3): 625-631.
  • 4Li Ming. Change Trend of Averaged Hurst Parameter of Traffic Under DDOS Flood Attacks[J]. Computers & Security, 2006, 25(3): 213-220.
  • 5Huang N E. Computer Implicated Empirical Mode Decomposition Method, Apparatus, and Articale of Manufacture: U.S. Patent[P]. 1996.
  • 6Flandrin E Ooncalves E Empirical Mode Decompositions as a Data-driven Wavelet-like Expansions[J]. International Journal onWavelets and Multires, 2004, 2(4): 477-496.
  • 7Mandelbrot B B, Van Ness J W. Fractional Brownian Motions Fractional Noises and Applications[J]. SIAM Review, 1968, (10): 422-437.

共引文献7

同被引文献49

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部