期刊文献+

功率谱流形上的Jacobi场

Jacobi Fields on the Manifold of Power Spectral
下载PDF
导出
摘要 从微分几何的角度,将功率谱的集合看成一个微分流形.引入流形上的黎曼度量及单参数仿射联络族,介绍了功率谱流形的几何结构,并且给出若干随机模型的数量曲率.研究了流形上的Jacobi场,进而考虑功率谱流形上测地线的收敛性,并以随机过程模型AR(1)为例说明结果. In the view of differential geometry,the set of power spectral is taken as a differential manifold.Moreover,the Riemannian metric and affine dual connections are introduced.Then,the geometric structure of power spectral manifold and its Jacobi fields are investigated.The scalar curvatures of several stochastic process models are given.Further,the instability of the geodesics on manifold is discussed.Finally,the stochastic process model is utilized to illustrate our results.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第8期862-865,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(61179031 10932002)
关键词 功率谱 微分几何 JACOBI场 power spectral differential geometry Jacobi field
  • 相关文献

参考文献2

二级参考文献17

  • 1Amari S. Differential geometrical methods in statistics [M]. Berling Springer-Verlag, 1985.
  • 2Amari S, Nagaoka H. Methods of information geometry [M]. Oxford.. Oxford University Press, 2000.
  • 3Cafaro C, All S A. Jacobi fields on statistical manifolds of negative curvature [J]. Physica D, 2007, 234 ( 1 ) : 70 - 80.
  • 4Casetti L, Pettini M, Cohen E G D. Geometric approach to Hamiltonian dynamics and statistical mechanics[J]. Physics Reports, 2000, 337(3):237- 341.
  • 5Ohara A,Kitamori T. Geometric structures of stable state feedback systems [J]. IEEE Transactions on Automatic Control, 1993,38 : 1579 - 1583.
  • 6Peter W, Petz D, Anda A. On the curvature of a certain Riemannian space of matrices [J]. Infinite Dimensional and Analysis, 2000,3(2) : 199 - 212.
  • 7Rao C R. Information and accuracy attainable in the estimation of statistical parameters[J]. Bull Calcutta Math Soc, 1945,37 :81 - 91.
  • 8Amari S, Nagaoka H. Methods of information geometry [M]. Oxford: Oxford University Press, 2000.
  • 9Amari S. Differential geometrical methods in statistics [M]. Berlin: Springer-Verlag, 1985.
  • 10Amari S. Differential geometry of a parametric family of invertible linear systems-riemannian metric, dual affine connections and divergence[J]. Math Systems Theory, 1987,20:53 - 82.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部