期刊文献+

一种修正的DY共轭梯度法的全局收敛性 被引量:3

Global Convergence for a Modified DY Conjugate Gradient Algorithm
下载PDF
导出
摘要 提出了一种新的非线性修正的DY共轭梯度算法(MDYCG),该算法得到的搜索方向为下降方向,它既不受线搜索规则的影响;也不受目标函数的凸性影响;在精确线搜索下,MDYCG算法化归为标准的DY共轭梯度算法;证明了该方法在Armijo型线搜索下的全局收敛性,给出了初步的数值结果。 This paper proposes a kind of new nonlinear modified DY conjugate gradient algorithm, whose search direction is descent direction and which is not affected by line search rule and is not affected by the convexity of objective function either.Under accurate line search, the modified DY conjugate gradient algorithm is turned to standard DY conjugate algorithm. This paper proves the global convergence of this algorithm under Armijotype line search and gives initial numerical result.
作者 敖卫斌
出处 《重庆工商大学学报(自然科学版)》 2013年第10期17-20,共4页 Journal of Chongqing Technology and Business University:Natural Science Edition
关键词 无约束优化 共轭梯度法 ARMIJO型线搜索 全局收敛性 unconstrained optimization conjugate gradient algorithm Armijo-type line search global convergence
  • 相关文献

参考文献10

  • 1SHI Z J. Convergence of line search methods for unconstrained optimization [ J ]. Applied Mathematics andComputation, 2004 (157) :393-405.
  • 2FLETCHER R, REEVES C. Function minimization by conjugate gradients[ J]. Computer Journal, 1964(7) :149-154.
  • 3POLAK E , RIBIERE G. Note sur la convergence de directions conjugees [ J ]. Rev Francaise InformatRecherche OperatineUe, 3e Annee, 1969(16): 35-43.
  • 4POLAKB T. The conjugate gradient method in extremem problems [ J ]. USSR Comp Math and Math. Phys. 1969(9) : 94-112.
  • 5HESTENES M R, STEIFEL E L. Methods of conjugate gradients for solving linear systems [ J ]. J Res Nat Bur Standards Sect. 1952, 5(49): 409-436.
  • 6LIU Y, STIEFELC. Efficient generalized conjugate gradient algorithms[J] .JOTA, 1991, 69(1) : 129-152.
  • 7DAI Y, YUAN Y. A nonlinear conjugate gradient with a strong global convergence property [ J ]. SIAM Journal on Optimization, 1999, 10(1): 177-182.
  • 8FLETCHER R. Practical methods of optimization [ M]. New York: Unconstrained Optimization, 1987.
  • 9ZHANG L, ZHOU W.LI D. Global convergence of a modified Fletcher-Reeves conjugate gradientmethod method with Armijo-type line search [ J ]. Numerische Mathematik 2006,104 (4) : 561-572.
  • 10MORE J,GARBOW B,HII.J.SU'ROMK E. Testing unconstrained optimization software[ J].ACM Trans,Math.Software,1981,7(1) :17-41.

同被引文献29

  • 1FLETCHER R,REEVES C.Function Minimization by Conjugate Gradients[J].Computer Journal,1964(7):149-154.
  • 2POLAK E,RIBIERE G.Note Sur La Convergence De Dirctions Conjugees[J].Rev Fran-caise Informat Recherche Opertionelle,3e Annee,1969(16):35-43.
  • 3HESTENES M R,SRIEFEL E L.Methods of Conjugate Gradient for Solving Linear Systems[J].Journal of Research of the National Bureau of Standards,1952,6(49):40-43.
  • 4FLETCHER R.Practical Methods Optimization[C]//John Wiley&sons:Unconstrained optimization.New York,1987.
  • 5LIU Y,STOREY C.Effcient Generalized Conjugate Gradient Algorithms[J].Journal of Optimiztion Theory and Applicatons,1991,69:129-137.
  • 6DAI Y H,YUAN Y.A nonlinear Conjugate Gradient with A Strong Global Conver-gence Property[J].SIAM Journal on Optimizton,2000(10):177-182.
  • 7MORE J J,GARBOW B S,HILLSTROME K E.Testing Unconstrained Optimization Software[J].ACM Trans Math Software,1981 (7):17-41.
  • 8WOLFE M A.Numerical Methods for Unconstrained Optimization[M].An Introduction,Van Nostrand Reinhold,London,1978.
  • 9FLETCHER R, REEVES C.Function Minimization by Conjugate Gradients [ J ]. Computer Journal, 1964 (7) :149-154.
  • 10POLAK E, RIBIERE G.Note Sur La Convergence De Dirctions Conjugees [ J] .Rev Fran-caise Informat Recherche Opertionelle, 3e Annee, 1969(16) :35-43.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部