期刊文献+

基于KLT/WT和谱特征矢量量化三维谱像数据压缩 被引量:2

3D Multispectral Imagery Data Compression Based on KLT/WT a nd VQ with Spectral-feature-coding
下载PDF
导出
摘要 提出了基于KLT/WT和谱特征矢量量化 (SFCVQ)三维谱像数据压缩的新方法。在对多光谱图像数据进行Karhunen Leove变换 (KLT)消除谱相关性 ,再应用小波变换 (WT)对KLT后的多光谱图像数据进行消除空间相关性。采用SFCVQ编码对每个谱像数据进行压缩 ,获得较高的压缩性能。实验结果表明 :KLT/WT/SFCVQ方法和KLT/WT/VQ压缩方法比在同样压缩比 (CR)条件下 ,峰值信噪比 (PSNR)没明显变化 ,而速度提高了 30倍 ,比KLT/WT/FSVQ也提高了 5倍 ,整体压缩性能有较大的提高。 In this paper we propose a new method for multispec tr al image data compression based on Karhunen-Leove Transformation (KLT)/Wavelet Transformation (WT) and VQ with Spectral Feature Coding(SFCVQ). After KLT is app lied to multispectral image data for exploiting the spectral correlation, the Wa velet Transformation (WT) is used for the transformed multispectral image data t o remove spatial redundancy. Then the SFCVQ is designed to compress every spectr al image data. A higher compression performance is obtained. Experimental result s shows that in comparison of the methods of KLT/WT/SFCVQ with KLT/KLT/VQ, under the condition of the same Compression Ratio ( CR ), the Peak Signal to Noise Ratio ( PSNR ) is not varied apparently, while the compression speed increase s 30folds, or 5folds compared with the KLT/WT/FSVQ, and the total compression pe rformance has a great enhancement.
出处 《遥感学报》 EI CSCD 2000年第4期290-294,共5页 NATIONAL REMOTE SENSING BULLETIN
基金 福建省自然科学基金资助!(9910 0 0 2 )
关键词 小波变换 矢量量化 数据压缩 KLT/WT SFCVQ 遥感 KLT wavelet transformation vector quantization with spectral feature coding data compression
  • 相关文献

参考文献5

二级参考文献1

  • 1陆大--,随机过程和应用,1987年,473页

共引文献4

同被引文献34

  • 1付文秀,王世刚,高燕梅,刘占声.结合矢量量化的SPIHT算法用于多光谱图像压缩[J].通信学报,2004,25(6):109-114. 被引量:5
  • 2杜培军,唐宏,方涛.高光谱遥感光谱相似性度量算法与若干新方法研究[J].武汉大学学报(信息科学版),2006,31(2):112-115. 被引量:21
  • 3王晋,张晓玲,沈兰荪,柴焱.一种基于网格编码量化的高光谱图像无损压缩方法[J].中国图象图形学报,2006,11(1):123-127. 被引量:4
  • 4钱神恩,阎敬文,孙辉,张圣华.基于光谱特征编码的快速矢量量化三维谱象数据压缩[J].电子学报,1997,25(5):11-16. 被引量:3
  • 5Zhang Y, Jin M, Zhang J P. Hyperspectral image compression baed on recursive bidirection prediction/JPEG [ J ]. Chinese Journal of Electronics, 2002, 9 (3) :235 - 241.
  • 6Mielikainen J, Toivanen P. Clustered DPCM for the lossless compression of hyperspectral images [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41 ( 12 ) :2943 - 2946.
  • 7Qian Shen-en. Hyperspectral data compression using a fast vector quantization algorithm [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(8) :1791 - 1798.
  • 8Abousleman G P, Marcellin M W, Reagan J T. Compression of hyperspectral imagery using the 3-D DCT and hybrid DPCM/DCT [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(1) :26-34.
  • 9Petrou M, Hou P, Kamata S, et al. Region-based image coding with multiple algorithms [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(3):562 - 570.
  • 10Ryan M J, Arnold J F. A suitable distortion measure for the lossy compression of hyperspectral data [ A ]. In: Proceedings of IEEE International Symposium on Geoscience and Remote Sensing [ C ], Seattle, WA, USA, 1998:2056 - 2058.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部