期刊文献+

基于最小Wilcoxon学习方法的Hammerstein模型辨识

Identification of Hammerstein Model based on Least Wilcoxon Learning Method
下载PDF
导出
摘要 提出一种基于最小Wilcoxon学习方法的非线性动态系统建模方法。用非线性静态子环节和线性动态子环节串联——Hammerstein模型来描述非线性动态系统。然后,将Hammerstein模型的非线性传递函数转换为等价的线性形式,从而建立起线性中间模型。再由最小Wilcoxon学习方法辨识出中间模型参数。最后,通过中间模型参数与Hammerstein模型参数之间的关系,推出原系统的非线性静态环节和线性动态环节的参数,从而实现原非线性动态系统建模。在系统仿真响应信号有扰动时,该方法比用最小二乘法辨识中间模型表现出更强的鲁棒性。 A modeling method for nonlinear dynamic system based on Least Wilcoxn learning method ( LW) was proposed .The nonlinear dynamic system is discribed by Hammerstein model expressed by a nonlinear static sub -unit followed by a linear dynamic subunit .Through the function expansion , the nonlinear transfer function of Ham-merstein model is converted to the equivalent linear form to generate the intermediate linear model .By LW meth-od, coefficients of the intermediate model are obtained .According to the relations between coefficients of interme-diate model and that of Hammerstein model , parameters of the nonlinear static subunit and linear dynamic subunit are derived .The original nonlinear dynamic system is modeled .The proposed method has better robustness than least square ( LS) method to identify the intermediate model , when there exists disturbance in output signal of the system.
作者 张翠梅
出处 《安徽理工大学学报(自然科学版)》 CAS 2013年第3期1-6,共6页 Journal of Anhui University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(61073102)
关键词 非线性动态系统 HAMMERSTEIN模型 最小Wilcoxon学习方法(LW) nonlinear dynamic system Hammerstein model least Wilcoxon learning method
  • 相关文献

参考文献13

  • 1SJOBERG J, ZHANG Q H, LJUNG L, et al. Nonlinear black- box modeling in system identification a unified overview [ J ]. Automatica, 1995,31 (12) : 1 691 - 1 724.
  • 2NARENDRA K S,PARTHASARATHY K. Identification and control of dynamical systems using neural networks [J]. IEEE Transactions on Neural Networks,1990, 1(1) :4 -27.
  • 3WANG G J,CHENG C C. A fast muhilayer neural net- work training algorithm based on the layer - by - layer optimizing procedures [ J ]. IEEE Transaction on Neural Networks, 1996,7 (4) :768 - 775.
  • 4ROY A, GOVIL S, MIRANDA R. A neural network learning theory and a polynomial time RBF algorithm [ J]. IEEE Transaction on Neural Networks, 1997,8(6):1 301-1 313.
  • 5漆为民,程远楚,姬巧玲,蔡维由.PID型Elman网络及在动态系统辨识中的应用研究[J].控制与决策,2005,20(10):1197-1200. 被引量:11
  • 6吴德会.基于SVR的非线性动态系统建模方法研究[J].计算机应用,2007,27(9):2253-2255. 被引量:3
  • 7王峰,邢科义,徐小平.非线性动态系统建模方法研究[J].计算机工程与应用,2009,45(10):7-10. 被引量:7
  • 8KE - JUN XU, LIN JIA. One - stage identification al- gorithm and two - step compensation method of Ham- merstein model with application to wrist force sensor [ J ]. Review of Scientific Instruments, 2002, 73 (4) : 1 949-1 955.
  • 9R V HOGG, J W MCKEAN, A T CRAIG. Introduc- tion to Mathematical Statistics [ M ]. 6th ed. Engle- wood Cliffs, NJ:Prentice - Hall, 2005:624 -626.
  • 10C C CHUANG, S F SU, S S CHEN. Robust TSK fuzzy modeling for function approximation with outliers [ J ]. IEEE Trans. Fuzzy Syst. , 2001,9(6) :810-821.

二级参考文献27

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2黄正良,万百五,韩崇昭.辨识Hammerstein模型的两步法[J].控制理论与应用,1995,12(1):34-39. 被引量:26
  • 3漆为民,程远楚,姬巧玲,蔡维由.PID型Elman网络及在动态系统辨识中的应用研究[J].控制与决策,2005,20(10):1197-1200. 被引量:11
  • 4吴德会.基于支持向量机的非线性动态系统辨识方法[J].系统仿真学报,2007,19(14):3169-3171. 被引量:13
  • 5Sjoberg J,Zhang Q H,Ljung L,et al.Nonlinear black-box modeling in system identification a unified overview[J].Automatica, 1995,31 (12) : 1691-1724.
  • 6Narendra K S,Parthasarathy Kldeutification and control of dynamical systems using neural networks[J].IEEE Transactions on Neural Networks, 1990,1( 1 ) :4-27.
  • 7Wang G J,Cheng C C.A fast multilayer neural network training algorithm based on the layer-by-layer optimizing procedures[J]. IEEE Transaction on Neural Networks,1996,7(4):768-775.
  • 8Roy A,Govil S,Miranda R. A neural network learning theory and a polynomial time RBF algorithm[J].IEEE Transaction on Neural Networks, 1997,8(6): 1301-1313.
  • 9Kennedy J,Eberhart R C.Particle swarm optimization[C]//Proc of IEEE International Conference on Neural Networks.Piscataway,New Jersey: IEEE Service C enter, 1995,4:1942-1948.
  • 10Elegbde C.Structural reliability assessment based on particles swarm optimization[J].Structural Safety,2005,27(10) : 171-186.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部