期刊文献+

基于Gabor特征的木材表面缺陷的分块检测 被引量:4

Gridding Detection of Wood Surface Defects Based on Gabor Features
下载PDF
导出
摘要 提出了一种新的木材表面缺陷的描述和检测方法,首先将木材表面图像划分成互不重叠的矩形块,即将木材图像矩阵进行分块;然后对每一块图像进行多方向多尺度Gabor变换,统计各个矩形块图像在不同尺度和方向上Gabor系数的均值和方差,将这些均值和方差组成一个描述矩形块的特征向量;为实现木材表面缺陷类别的检测,最后将块特征向量归一化后输入LS-SVM分类器,利用特征向量的相似度来进行缺陷的定位和识别。结果表明,该方法避免了传统检测方法需要进行图像分割的复杂性和局限性,它通过一个或多个矩形块的组合来定位缺陷,检测准确率超过91%。 We proposed a new method for wood surface defects description and detection based on Gabor features. Firstly, the wood surface image is divided into non-overlapping rectangular blocks. Then, every block of the image is decomposed by convolving with multi-scale and multi-orientation Gabor filters. Through statistical techniques, including mean and variance of Gabor coefficients inside each block, the block feature vector can be obtained to describe every block. Finally, the extracted feature vectors are normalized and inputted into the LS-SVM classifier to locate and detect the defects. Our method can avoid the complexity and limitations of image segmentation and the detection accuracy is more than 91%.
作者 马大国 马岩
机构地区 东北林业大学
出处 《东北林业大学学报》 CAS CSCD 北大核心 2013年第10期118-121,共4页 Journal of Northeast Forestry University
基金 国家自然科学基金(30972314) 国家林业公益性行业科研专项(201004007)
关键词 木材 缺陷检测 GABOR变换 Wood Defect detection Gabor transform
  • 相关文献

参考文献10

二级参考文献54

共引文献119

同被引文献41

  • 1石岭,王克奇,白雪冰,王业琴.板材表面缺陷检测技术[J].林业机械与木工设备,2005,33(3):40-42. 被引量:14
  • 2贾朱植,董立文,董勃,谢元旦.Fourier变换和Gabor变换与小波变换的比较研究[J].鞍山科技大学学报,2005,28(1):12-16. 被引量:9
  • 3Ghosh S, Malgireddy MR, Chaudhary V, et al. A supervised approach towards segmentation of clinical MRI for automatic lumbar diagnosis [M] // Lecture Notes in Computational Vision and BiomeChanics 17. Berlin: SpringerVerlag, 2014: 185-195.
  • 4Da Silva Barreiro M, NogueiraBarbosa MH, Rangayyan RM, et al. Semiautomatic classification of intervertebral disc degeneration in magnetic resonance images of the spine[C]// Proceedings of Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC), 5th ISSNIPIEEE. Salvador: IEEE Computer Society Press, 2014: 1-5.
  • 5Shi Ruiqiong, Sun Dongmei, Qiu Zhengding, et al. An efficient method for segmentation of MRI spine images[C]//Proceedings of IEEE/ICME International Conference on Complex Medical Engineering. Beijing: IEEE Computer Society Press, 2007: 717-721.
  • 6Alomari RS, Corso JJ, Chaudhary V. Labeling of lumbar discs using both pixeland objectlevel features with a twolevel probabilistic model [J]. IEEE Trans Med Imaging, 2011, 30(1): 1-10.
  • 7Ghosh S, Chaudhary V. Supervised methods for detection and segmentation of tissues in clinical lumbar MRI [J]. Computerized Medical Imaging and Graphics, 2014, 38: 639-649.
  • 8Oktay AB, Akgul YS. Simultaneous localization of lumbar vertebrae and intervertebral discs with SVMbased MRF [J]. IEEE Trans Biomed Eng, 2013, 60(9): 2375-2383.
  • 9Peng Zhigang, Zhong Jia, Wee W, et al. Automated vertebra detection and segmentation from the whole spine MR images[C]// Proceedings of 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS). Shanghai: IEEE Computer Society Press, 2005: 2527-2530.
  • 10Ghosh S, Alomari RS, Chaudhary V, et al. Computeraided diagnosis for lumbar mri using heterogeneous classifiers[C]// Proceedings of IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Chicago: IEEE Computer Society Press, 2011:1179-1182.

引证文献4

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部