期刊文献+

聚甲基丙烯酸单层保护金纳米粒子选择性检测Pb^(2+) 被引量:3

Selective Detection of Pb^(2+) Using Poly( methylacrylic acid) Monolayer-protected Gold Nanoparticles
下载PDF
导出
摘要 以聚甲基丙烯酸单层保护的金纳米粒子(GNPs)作为传感器,实现了水溶液中Pb2+的选择性循环检测.先采用柠檬酸钠还原法获得尺寸均匀的GNPs,再通过具有硫醇端基的聚甲基丙烯酸与金的强耦合作用,获得了聚甲基丙烯酸单层保护的金纳米粒子(PMAA-@-GNPs).动态光散射、紫外-可见吸收光谱及透射电子显微镜表征证实了其单层结构.在Pb2+的诱导下,PMAA-@-GNPs溶液颜色从酒红色变为紫色并可肉眼识别.透射电子显微镜结果证实,这种变化是由于Pb2+交联羧基使聚合物发生收缩,并诱导GNPs的聚集所致.对比Pb2+与Hg2+,Mg2+,Cu2+,Zn2+,Na+,Ni2+,Fe3+,Cd2+,K+和Fe2+溶液颜色的变化,证实此体系具有一定的选择性.用EDTA可夺取交联的Pb2+,使PMAA-@-GNPs的吸收峰恢复并可用于循环检测Pb2+. In this work, the selective colorimetric detection of Pb2+ was studied using poly (methylacrylic acid) monolayer-protected gold nanoparticles(PMAA-@-GNPs). The GNPs with uniform size and distribution were firstly synthesized by the citrate reduction method. Then PMAA-@-GNPs were prepared by the strong binding of the GNPs and the thiol ends groups of the PMAA. The monolayer structure was proved by the dy namic light scattering, UV-visible spectra and transmission electron microscopy. In the presence of Pb2+, the color of the solution changed from wine red to purple and could be measured by visual inspection. TEM results demonstrated that the induced aggregation of GNPs by Pb2+ crosslinking carboxyl groups. The selectivity of Pb2+ detection has also been investigated by comparing the color changes of solutions with other metal ions, including Hg2+, Mg2+, Cu2+, Zn2+, Na+, Ni2+, Fe3+, Cd2+, K+ and Fe2+. After tre+3+l y EDTA, the aggrega- ted PMMA-@-GNPs could be renewable and recycled detecting Pb2+.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2013年第10期2303-2307,共5页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51103035) 河南省科技攻关项目(批准号:132102310422)资助
关键词 聚甲基丙烯酸 金纳米粒子 Pb2+ 检测 pb2+Poly ( methylacrylic acid) Gold nanoparticles Detection
  • 相关文献

参考文献23

  • 1Needleman H. , Annu. Rev. Med. , 2004, 55,209-222.
  • 2Hassanien M. M., Kenawy I. M., El-Menshawy A. M., El-Asmy A. A., Hazard. Mater., 2008, 158, 170-176.
  • 3Bednar A. J., Kirgan R. A., Jones W. T., Anal. Chim. Acta, 2009, 632, 27-34.
  • 4Huang K. W., Yang H., Zhou Z. G., Yu M. X., Li F. Y., Gao X., Yi T., Huang C. H., Organ. Lett., 2008, 10, 2557-2560.
  • 5Li Y., Chen C., Li B., Sun J., Wang J., Gao Y., Zhao Y., Chai Z. J., Anal. Atomic Spectrometry, 2006, 21, 94-96.
  • 6Hung Y. L., Hsiung T. M., Chen Y. Y., Huang Y. F., Huang C. C., J. Phys. Chem. C, 2010, 114, 16329-16334.
  • 7Wang J. E., Wang C. K., Liu D. J., Wang Z. X., Chem. Res. Chinese Universities, 2011, 27(2), 193-197.
  • 8Kado S., Furui A., Akitama Y., Nakahara Y., Kimura K., Anal. Sci., 2009, 25, 261-265.
  • 9Xia Y., Xiong Y., Lim B., Skrabalak S. E., Angew. Chem. Int. Ed., 2009, 48, 60-103.
  • 10Carmen E., Lisowski, James E., Hutchison, Anal. Chem., 2009, 81, 10246-10253.

同被引文献37

  • 1姚素薇,邹毅,张卫国.金纳米粒子的特性、制备及应用研究进展[J].化工进展,2007,26(3):310-314. 被引量:21
  • 2Feng J.J.,Guo H.,Li Y.F.,Wang Y.H.,Chen W.Y.,Wang A.J.,ACS Appl.Mater.Interfaces,2013,5(4),1226-1231.
  • 3Liu L.,Li S.J.,Liu L.L.,Deng D.H.,Xia N.,Analyst,2012,137,3794-3799.
  • 4Wightman R.M.,May L.J.,Michael A.C.,Anal.Chem.,1988,60(13),769A-793A.
  • 5Mo J.W.,Ogorevc B.,Anal.Chem.,2001,73(6),1196-1202.
  • 6Su H.C.,Sun B.,Chen L.J.,Xu Z.N.,Ai S.Y.,Anal.Methods,2012,4,3981-3986.
  • 7Baldrich E.,Gomez R.,Gabriel G.,Munoz F.X.,Biosens.Bioelectron.,2011,26,1876-1882.
  • 8Robinson D.L.,Hermans A.,Seipel A.T.,Wightman R.M.,Chem.Rev.,2008,108,2554-2584.
  • 9Nikolajsen R.P.H.,Hansen A.M.,Anal.Chim.Acta,2001,449,1-15.
  • 10Zhao S.L.,Huang Y.,Shi M.,Liu R.J.,Liu Y.M.,Anal.Chem.,2010,82,2036-2041.

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部