期刊文献+

基于数据非随机缺失机制的推荐系统托攻击探测 被引量:9

Detecting Shilling Attacks in Recommender Systems Based on Non-random-missing Mechanism
下载PDF
导出
摘要 协同过滤推荐系统极易受到托攻击的侵害.开发托攻击探测技术已成为保障推荐系统可靠性与鲁棒性的关键.本文以数据非随机缺失机制为依托,对导致评分缺失的潜在因素进行解析,并在概率产生模型框架内将这些潜在因素与Dirichlet过程相融合,提出了用于托攻击探测的缺失评分潜在因素分析(Latent factor analysis for missing ratings,LFAMR)模型.实验表明,与现有探测技术相比,LFAMR具备更强的普适性和无监督性,即使缺乏系统相关先验知识,仍可有效探测各种常见托攻击. Collaborative filtering recommender systems are highly vulnerable to shilling attacks. Developing detection techniques against shilling attacks has become the key to guaranteeing both the reliability and robustness of recommender systems. Through revealing the latent factors invoking missing ratings under the non-random-missing mechanism, and further combining these latent factors with Dirichlet process in the framework of probabilistic generative model, this paper proposes a latent factor analysis for missing ratings (LFAMR) model for attack detection. Experimental results show that comparing with the existing detection techniques, LFAMR is more universal and unsupervised, and that it can effectively detect shilling attacks of typical types even in lack of system-related prior knowledge.
作者 李聪 骆志刚
出处 《自动化学报》 EI CSCD 北大核心 2013年第10期1681-1690,共10页 Acta Automatica Sinica
关键词 协同过滤 托攻击 缺失数据 Dirichlet过程 变分推断 Collaborative filtering, shilling attacks, missing data, Dirichlet process, variational inference
  • 相关文献

参考文献25

  • 1Adomavicius G,Tuzhilin A.Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions.IEEE Transactions on Knowledge and Data Engineering,2005,17(6):734-749.
  • 2Su X Y,Khoshgoftaar T M.A survey of collaborative filtering techniques.Advances in Artificial Intelligence,2009,2009:1-20.
  • 3Mobasher B,Burke R,Bhaumik R,Sandvig J J.Attacks and remedies in collaborative recommendation.IEEE Intelligent Systems,2007,22(3):56-63.
  • 4Lam S K,Riedl J.Shilling recommender systems for fun and profit.In:Proceedings of the 13th International Conference on World Wide Web.New York,USA:ACM,2004.393-402.
  • 5O'Mahony M P,Hurley N J,Kushmerick N,Silvestre G C M.Collaborative recommendation:a robustness analysis.ACM Transactions on Internet Technology,2004,4(4):344-377.
  • 6Huang Z,Chen H,Zeng D.Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.ACM Transactions on Information Systems,2004,22(1):116-142.
  • 7Mobasher B,Burke R D,Bhaumik R,Williams C.Toward trustworthy recommender systems:an analysis of attack models and algorithm robustness.ACM Transactions on Internet Technology,2007,7(4):1-40.
  • 8Burke R,Mobasher B,Williams C,Bhaumik R.Classification features for attack detection in collaborative recommender systems.In:Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.Philadelphia,Pennsylvania,USA:ACM,2006.542-547.
  • 9Zhang S,Ouyang Y,Ford J,Makedon F.Analysis of a low-dimensional linear model under recommendation attacks.In:Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Seattle,Washington,USA:ACM,2006.517-524.
  • 10Mehta B,Nejdl W.Unsupervised strategies for shilling detection and robust collaborative filtering.User Modeling and User-Adapted Interaction,2009,19(1-2):65-97.

同被引文献69

  • 1高建煌,陈恩红,刘淇.基于用户兴趣传播的协同过滤方法[J].电子技术(上海),2010(6):1-4. 被引量:1
  • 2陈刚,刘发升.基于BP神经网络的数据挖掘方法[J].计算机与现代化,2006(10):20-22. 被引量:14
  • 3屈军,林旭.文本分类中特征提取方法的比较与分析[J].现代计算机,2007,13(4):10-13. 被引量:8
  • 4Borrás J, Moreno A, Valls A. Intelligent tourism recommender systems: a survey. Expert Systems with Applications, 2014, 41(16): 7370-7389.
  • 5Qu M, Zhu H S, Liu J M, Liu G N, Xiong H. A cost-effective recommender system for taxi drivers. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014. 45-54.
  • 6Chung N, Koo C, Kim J K. Extrinsic and intrinsic motivation for using a booth recommender system service on exhibition attendees' unplanned visit behavior. Computers in Human Behavior, 2014, 30: 59-68.
  • 7Gao M, Wu Z F, Jiang F. Userrank for item-based collaborative filtering recommendation. Information Processing Letters, 2011, 111(9): 440-446.
  • 8Li C, Luo Z G. Detection of shilling attacks in collaborative filtering recommender systems. In: Proceedings of the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR). Dalian, China: IEEE, 2011. 190-193.
  • 9Mobasher B, Burke R, Williams C, Bhaumik R. Analysis and detection of segment-focused attacks against collaborative recommendation. In: Proceeding of the 7th International Workshop on Knowledge Discovery on the Web, Advances in Web Mining and Web Usage Analysis. Berlin, Heidelberg: Springer, 2006. 96-118.
  • 10Seminario C E, Wilson D C. Attacking item-based recommender systems with power items. In: Proceedings of the 8th ACM Conference on Recommender Systems. New York: ACM, 2014. 57-64.

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部