期刊文献+

一类Tornheim型双L函数的估计

Evaluation of a Class of Double L-values of Tornheim's Type
原文传递
导出
摘要 Tornheim型双L函数定义如下:其中χ,φ为Dirichlet特征,k,l,d∈Z且k+d>1,l+d>1,k+l+d>2.本文给出了当χ,φ为Dirichlet原特征,并且满足χ(-1)φ(-1)=(-1)^(k+l+d+1)时计算L(k,l,d;χ,φ)精确结果的一种方法,推广了[Tsumura,H.,Bull.Austral.Math.Soc.,2004,70(2):213-221]的计算结果. The double L-series of Tornheim's type are defined as L(k,l,d;x,ψ)=∑∞m,n=1x(m)ψ(m+n/mknl(m+n)d for Dirichlet characters X,ψ, where k,l,d ∈ Z with k + d 〉 1, 1 + d 〉 1, k + l + d 〉 2. In thispaper, we show that the values of L(k, l, d; X, ψ) can be evaluated for any primitive Dirichletcharacter X, ψ, when X(-1)ψ(-1) = (-1)^k+l+d+1. Our method also provides a way to calculatethem explicitly. This generalizes the results of [Tsumura, H., Bull. Austral. Math. Soc., 2004, 70(2): 213-221].
出处 《数学进展》 CSCD 北大核心 2013年第5期655-664,共10页 Advances in Mathematics(China)
基金 Supported by the Youth Technology Fund of Xi'an University of Architecture and Technology(No.QN1138,No.QN1134,No.QN1135) the Natural Science Foundation of the Education Department ofShaanxi Province of China(No.2013JK1190)
关键词 Tornheim型双L函数 双L函数 估值公式 Subject Classification: 11M41 40B05 / CLC number: O156.4
  • 相关文献

参考文献18

  • 1Borwein, D., Borwein, J.M. and Girgensohn, R., Explicit evaluation of Euler sums, Proc. Edinburgh. Math. Soc., 1995, 38(2): 277-294.
  • 2Borwein, J.M., Bradley, D.M. and Broadhurst, D.J., Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin., 1997, 4(2): #R5.
  • 3Borwein, J.M., Bradley, D.M., Broadhurst, D.J. and Lisonk, P., Combinatorial aspects of multiple zeta values, Electron. J. Combin., 1998, 5(1): R38.
  • 4Borwein, J.M., Bradley, D.M., Broadhurst, D.J. and Lison6k, P., Special values of multiple polylogarithms, Yans. Amer. Math. Soc., 2001, 353(3): 907-941.
  • 5Borwein, J.M. and Girgensohn, R., Evaluation of triple Euler sums, Electron. J. Coznbin., 1996, 3(1): #R23.
  • 6Bowman, D. and Bradley, D.M., Multiple polylogarithms: a brief survey, In: q-series With Applications to Combinatorics, Number Theory, and Physics(Berndt, B.C. and Ono, K., eds.), Contemporary Math., Vol. 291. Providence: AMS, 2001, 71-92.
  • 7Bowman, D. and Bradley, D.M., Resolution of some open problems concerning multiple zeta evamatlons oi arbitrary depth, Cornpositio Math., 2003, 139(1): 85-100.
  • 8Crandall, R.E., Fast evaluation of multiple zeta sums, Math. Comput., 1998, 67(223): 1163-1172.
  • 9Flajolet, P. and Salvy, B., Euler sums and contour integral representations, Experiment. Math., 1998, 7(1): 15-35.
  • 10Huard, J.G., Williams, K,S. and Zhang N.Y., On Tornheim's double series, Acta Arith., 1996, 75(2): 105-117.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部