摘要
Tornheim型双L函数定义如下:其中χ,φ为Dirichlet特征,k,l,d∈Z且k+d>1,l+d>1,k+l+d>2.本文给出了当χ,φ为Dirichlet原特征,并且满足χ(-1)φ(-1)=(-1)^(k+l+d+1)时计算L(k,l,d;χ,φ)精确结果的一种方法,推广了[Tsumura,H.,Bull.Austral.Math.Soc.,2004,70(2):213-221]的计算结果.
The double L-series of Tornheim's type are defined as L(k,l,d;x,ψ)=∑∞m,n=1x(m)ψ(m+n/mknl(m+n)d for Dirichlet characters X,ψ, where k,l,d ∈ Z with k + d 〉 1, 1 + d 〉 1, k + l + d 〉 2. In thispaper, we show that the values of L(k, l, d; X, ψ) can be evaluated for any primitive Dirichletcharacter X, ψ, when X(-1)ψ(-1) = (-1)^k+l+d+1. Our method also provides a way to calculatethem explicitly. This generalizes the results of [Tsumura, H., Bull. Austral. Math. Soc., 2004, 70(2): 213-221].
出处
《数学进展》
CSCD
北大核心
2013年第5期655-664,共10页
Advances in Mathematics(China)
基金
Supported by the Youth Technology Fund of Xi'an University of Architecture and Technology(No.QN1138,No.QN1134,No.QN1135)
the Natural Science Foundation of the Education Department ofShaanxi Province of China(No.2013JK1190)