期刊文献+

非恒同耦合系统的同步

Synchronization of Nonidentical Coupled Systems
原文传递
导出
摘要 在过去的几十年,由于同步在通信、光学、神经生物网络等不同领域的广泛应用,使得耦合动力系统的同步行为吸引了很多的注意.除了关于周期信号的经典同步概念,还引入了许多新的同步的类型:如混沌同步,相同步,广义同步等等.利用不变流形理论讨论非恒同耦合系统的同步. Synchronization motion in coupled dynamical systems has attracted much atten- tion over the last few decades, due to its applications in such diverse areas as communications, optics, and neurobiological networks. In addition to the classic concept of synchronization of periodic signals, many new types of synchronization have been introduced: chaotic syn- chronization, phase synchronization, generalized synchronization, and so on. We use invariant manifold theory to discuss the synchronization of nonidentical coupled systems.
作者 缪雪晴 丁卫
出处 《数学的实践与认识》 CSCD 北大核心 2013年第19期231-236,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(41276097) 南通市科技项目(BK2012072) 南通大学2012年大学生创新创业训练计划项目(93) 南通大学自然科学项目(10Z011)
关键词 非恒同耦合系统 不变流形 李普希兹常数 同步 nonidentical coupled systems invariant manifold lipschitz constant synchro-nization
  • 相关文献

参考文献8

  • 1Fujisaka H, Yamada T. Stability theory of synchronized motion in coupled oscillator systems[J]. Progress of Theoretical Physics, 1983, 69(1): 32-47.
  • 2Afraimovich V S, Verichev N N, Rabinovich M I: Stochastic synchronization of oscillations in dissipative systems[J]. Radiofizika, 1986, 29: 1050-1060.
  • 3Barahona M, Pecora L M. Synchronization in small-world systems[J]. Phys Rev Lett, 2002, 89(5): 054101.
  • 4Lu J, Yu X, Chen G, & Cheng D. Characterizing the synchronizability of small-world dynamical networks[J]. IEEE Trans Circuits Systems, 2004, 51(4): 787-796.
  • 5Hale J K. Diffusive coupling,dissipation and synchronization[J]. J Dyn Diff Equa, 1997, 9: 1-51.
  • 6Nipp K, Stoffer D. Attractive invariant manifolds for maps existence, smoothness, and continu- ous dependence on the map [C]//EidgenSssische Technische Hochschule, Seminar fiir Angewandte Mathematik. 1992.
  • 7Belykh I V, Belykh V N, Nevidin K V, & Hasler M. Persistent clusters in lattices of coupled nonidentical systems[J]. Chaos, 2003, 13(1): 165-178.
  • 8Wang X, Chen G, Synchronization in small-world dynamical networks[J]. Int J Bifurcation Chaos, 2002, 12(1): 187-192.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部