摘要
研究了一类具有非线性接触率并带有隔离项的传染病数学模型·利用Poincare Bendixson定理并通过构造Liapunov函数证明了地方病平衡点和无病平衡点的全局稳定性,揭示了隔离对平衡点的影响.最后运用数值模拟对文中所得结论进行验证.
A kind of SIQS epidemic model with nonlinear incidence rate is considered. By means of Liapunov function and Poincare-Bendixson theorem, we proved the global asymptotic stability for the endemic equilibrium and disease-free equilibrium. The influence of quarantine period to the disease is exposed. Through numerical simulation demonstrates the critical situation, the results showed that the disease-free equilibrium and the endemic equilibrium are global asymptotic stability.
出处
《数学的实践与认识》
CSCD
北大核心
2013年第19期281-286,共6页
Mathematics in Practice and Theory
基金
国家自然科学基金(11071164)
上海医疗器械高等专科学校校科研启动基金(A25001201-8)