期刊文献+

关于一类对称函数的Schur凸性 被引量:1

On Schur-convexity for a Class of Symmetric Functions
原文传递
导出
摘要 利用Schur凸函数、Schur几何凸函数和Schur调和凸函数的有关性质简化证明了一类与对数凸函数有关的对称函数的Schur凸性、Schur几何凸性和Schur调和凸性. By the properties of Schur convex function, Schur geometrically convex function and Schur harmonically convex function, Schur convexity, Schur geometric convexity and Schur harmonic convexity of a class of symmetric functions with the logarithmically convex function are simply proved.
作者 张静 石焕南
出处 《数学的实践与认识》 CSCD 北大核心 2013年第19期292-296,共5页 Mathematics in Practice and Theory
基金 北京市属高等学校人才强教计划(PHR201108407)
关键词 受控 SCHUR凸性 Schur几何凸性 Schur调和凸性 不等式 凸函数 对数凸函数 majorization Schur convexity Schurvexity inequality convex function logarithmicallygeometric convexity Schur harmonic conconvex function
  • 相关文献

参考文献14

  • 1Marshall A W, Olkin I, Arnold B C. Inequalities: theory of majorization and its application (Second Edition) [M]. New York: Springer, 2011.
  • 2张小明.几何凸函数的几个定理及其应用[J].首都师范大学学报(自然科学版),2004,25(2):11-13. 被引量:21
  • 3褚玉明,孙天川.THE SCHUR HARMONIC CONVEXITY FOR A CLASS OF SYMMETRIC FUNCTIONS[J].Acta Mathematica Scientia,2010,30(5):1501-1506. 被引量:13
  • 4Chu y-M, Wang G-D, Zhang X-H. Schur muftiplicative and harmonic convexities of the complete symmetric function[J]. Mathematische Nachrichten, 2011, 284(5-6):53-663.
  • 5Chu Y-M, Lv Y-P. The Schur harmonic convexity of the Hamy symmetric function and its appli- cations [J]. Journal of Inequalities and Applications, Volume 2009, Article ID 838529, 10 pages, doi: 10.1155/2009/838529.
  • 6Culjak V, Pecaric J. Schur-convexity of Cebisev functional[J]. Mathematical Inequalities & Appli- cations, 2011, 14(4): 911 916.
  • 7Roventa I. Schur convexity of a class of symmetric functions [J]. Annals of the University of Craiova, Mathematics and Computer Science Series. 2010, 37(1): 12-18.
  • 8王淑红,张天宇,华志强.一类对称函数的Schur—几何凸性及Schur—调和凸性[J].内蒙古民族大学学报(自然科学版),2011,26(4):387-390. 被引量:3
  • 9Witkowski A. On Schur-convexity and Schur-geometric convexity of four-parameter family of means [J]. Mathematical Inequalities & Applications, 2011, 14(4): 897-903.
  • 10Culjak V, Franjic I, Ghulam R, Pecaric J. Schur-Convexity of Averages of Convex Functions[J]. Jour- nal of Inequalities and Applications, Volume 2011, Article ID 581918, 25 pages, doi: 10.1155/2011/581918.

二级参考文献10

  • 1程立新,张风.DIFFERENTIABILITY OF CONVEX FUNCTIONS AND ASPLUND SPACES[J].Acta Mathematica Scientia,1995,15(2):171-179. 被引量:3
  • 2Ionel Roventa.Schur convexity of a class of symmetric functions[J].Annals of the University of Craiova,Mathematics and Computer Science Series,2010,37(1):12-18.
  • 3K-Z Guan.Some properties of a class of symmetric functions[J].Journal of Mathematical Analysis and Applications, 2007,336 ( 1 ):70-80.
  • 4Y Chu, X Zhang, G Wang.The Schur geometrical convexity of the extended mean values[J].Journal of Convex Analysis, 2008,15(4):707-718.
  • 5G D Anderson, M K Vamanamurthy, M Vuorinen.Generalized convexity and inequalities[J].Journal of Mathematical Analysis and Applications, 2007,335 (2): 1294-1308.
  • 6A W Marshall,I Olkin.lnequalities: Theory of Majorization and Its Applications, Academic Press [M].New York: NY, USA,1979.
  • 7Wei-Feng Xia,Yu-Ming Chu.Schur-convexity for a class of symmetric functions and Its Applications[J]. Journal of Inequalities and Applications,2009, Article ID 493759: 15.
  • 8张涛,白瑞芳,宝音特古斯.一类Hamy型对称函数的Schur凸性质[J].内蒙古民族大学学报(自然科学版),2010,25(2):133-135. 被引量:2
  • 9杨露.关于几何凸函数的不等式[J].河北大学学报(自然科学版),2002,22(4):325-328. 被引量:20
  • 10张小明,吴善和.几何凸函数的一个特征性质及其应用[J].湖南理工学院学报(自然科学版),2003,16(3):17-19. 被引量:10

共引文献34

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部