期刊文献+

融合PSA与LDA算法的挤压状态下耳纹识别方法

Integration of PSA and LDA Algorithm under the Squeezed State of Ear Grain Recognition Method
下载PDF
导出
摘要 为了提高警察破案过程中耳纹识别的准确度,克服传统算法针对挤压耳纹形变的高维度干扰,提出了一种挤压状态下耳纹识别的报警方法.在传统算法的基础上,利用计算机视觉耳纹图像标准差和局部均值处理对耳纹图像灰度值进行处理,融合PSA算法与LDA算法,对挤压状态下识别耳纹图形向量进行非线性降维处理,产生具有较强判断能力的挤压状态下耳纹识别分类器,完成高精度误别.仿真结果表明:该算法有效降低了挤压等外界因素对耳纹识别技术的影响,提高了识别的准确度. In order to improve the police investigation process middle ear grain recognition accuracy, overcome traditional algorithm in view of the high dimension extrusion ear grain deformation, this paper proposes a ear grain extrusion condition recognition method of alarm. On the basis of the traditional algorithm, the use of computer vision ear grain local mean standard deviation and image processing to deal with the ear grain image grey value, the fusion algorithm of PSA and LDA algorithm, ear grain pattern vector of extrusion condition recognition nonlinear dimension reduction processing, has a strong ability to judge the ear grain extrusion condition recognition classifier, finish high precision don't by mistake. The simulation results show that the algorithm effectively reduces the external factors such as extrusion effect on ear pattern recognition technology, improve the identification accuracy.
作者 马晓珺 赵哲
出处 《微电子学与计算机》 CSCD 北大核心 2013年第10期153-156,共4页 Microelectronics & Computer
关键词 耳纹识别 局部均值 耳纹图像灰度 耳纹图像识别率 计算机视觉 ear grain recognition local mean value ear grain picture gray scale ear grain image recognition rate computer vision
  • 相关文献

参考文献5

二级参考文献32

  • 1杨洁,冯力刚,蒋加伏.基于小波包和支持向量机的人脸识别[J].计算机仿真,2004,21(9):131-133. 被引量:7
  • 2孙晓鹏,李华.三维网格模型的分割及应用技术综述[J].计算机辅助设计与图形学学报,2005,17(8):1647-1655. 被引量:49
  • 3唐涛,粟毅,陈涛,李智勇.一种新的图像局部仿射不变特征提取方法[J].计算机仿真,2007,24(7):229-234. 被引量:14
  • 4Gottumukkal R,Asari V K.An Improved Face Recognition Technique Based on Modular PCA Approach[J].Pattern Recognition Letter,2004,25(4):429-436.
  • 5Chen Songcan,Zhu Yulian.Subpattern-based Principle Component Analysis[J].Pattern Recognition,2004,37(5):1081-1083.
  • 6Tan Keren,Chen Songcan.Adaptively Weighted Sub-pattern PCA for Face Recognition[J].Neurocomputing,2005,64(3):505-511.
  • 7Hsieh P C,Tung P C.A Novel Hybrid Approach Based on Sub-pattern Technique and Whitened PCA for Face Recognition[J].Pattern Recognition,2009,42(5):978-984.
  • 8Park M S,Na J H,Choi J Y.Feature Extraction Using Class-augmented Principal Component Analysis[C]//Proc.of the 5th IEEE International Conference on Automatic Face and Gesture Recognition.Washington D.C.,USA:[s.n.],2002.
  • 9Park M S,Choi J Y.Theoretical Analysis on Feature Extraction Capability of Class-augmented PCA[J].Pattern Recognition,2009,42(11):2353-2362.
  • 10Yang Wankou.Feature Extraction Based on Laplacian Bidirectional Maximum Margin Criterion[J].Pattern Recognition,2009,42(11):2327-2334.

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部