期刊文献+

关联挖掘下的海量文本信息深入挖掘实现 被引量:2

Text Mining Method of Massive Network Based on Correlation Mining
下载PDF
导出
摘要 研究基于关联度挖掘的海量网络文本挖掘方法;随着计算机和网络技术的快速发展,网络上的文本呈现海量增长的趋势,传统的网络文本挖掘方法采用基于特征提取的方法实现,能够实现小数据量下的文本挖掘,但是在信息量的快速增长下,传统方法已经不能适应;提出一种基于关联度挖掘的海量网络文本挖掘方法,首先采用特征提取的方法对海量文本进行初步的分类和特征识别,然后采用关联度挖掘的方法对各个文本特征之间的关联度进行计算处理,根据关联度的大小最终实现文本挖掘,由于关联度可以很好的体现特征文本之间的相互关系;最后采用一组随机的网络热门词汇进行测试实验,结果显示,算法能够很好适应海量文本下的挖掘实现,具有很好的应用价值. The text mining method of massive network based on correlation mining was research on. With the rapid development of computer and network technology, the text rendering of network grew fast, the traditional network --based text mining method extracted feature from text to achieve text mining, but with the rapid growth in the amount of information, the traditional methods cannot meet the need of development. So a text mining method of massive network based on correlation mining was proposed, the feature was extracted with mass text to finish initial classification and characteristics identification, and then the method of mining correlation between the characteristics of the various texts correlation was used to do calculate the coefficient of correlation, according to the coefficient of correlation, the text was divided into several types, so the correlation can reflect the relationship between the characteristics of the text well. Finally, a team of random words were used to test the ability of the algorithm, and the result shows that the algorithm can adapt to massive text excavation well with good application value.
作者 彭其华
出处 《微电子学与计算机》 CSCD 北大核心 2013年第10期157-160,164,共5页 Microelectronics & Computer
关键词 关联度挖掘 海量文本 特征提取 correlation mining massive text feature extraction
  • 相关文献

参考文献7

二级参考文献27

  • 1赵世奇,张宇,刘挺,陈毅恒,黄永光,李生.基于类别特征域的文本分类特征选择方法[J].中文信息学报,2005,19(6):21-27. 被引量:21
  • 2苏金树,张博锋,徐昕.基于机器学习的文本分类技术研究进展[J].软件学报,2006,17(9):1848-1859. 被引量:388
  • 3[1]Collins T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):745~746
  • 4[2]Howarth R J, Buxton H. Conceptual descriptions from monitoring and watching image sequences. Image and Vision Computing, 2000, 18(9): 105~135
  • 5[3]Howarth R J, Hilary B. A analogical representation of space and time. Image and Vision Computing, 1992, 10(7): 467~478
  • 6[4]Andre E, Herzog G, Rist T. On the simultaneous interpretation of real world image sequences and their natural language description: The system soccer. In: Proceedings of the ECAI-88, Munich, 1988. 449~454
  • 7[5]Schaefer K, Haag M, Theilmann W, Nagel H. Integration of image sequence evaluation and fuzzy metric temporal logic programming. In: Habel C, Brewka G, Nebel B eds. Advances in Artificial Intelligence. Lecture Notes in Computer Science,1303, New York:Springer, 1997. 301~312
  • 8[6]Brand M, Kettnaker V. Discovery and segmentation of activities in video. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 844~851
  • 9[7]Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition. Image and Vision Computing, 1996, 14(8): 609~615
  • 10[8]Johnson N, Galata A, Hogg D. The acquisition and use of interaction behaviour models. In:Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Silver Spring, MD: IEEE Computer Society Press, 1998. 866~871

共引文献242

同被引文献7

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部