期刊文献+

形变及热处理对白铜B10合金晶界特征分布的影响 被引量:11

Effect of deformation and heat-treatment on grain boundary distribution character of cupronickel B10 alloy
下载PDF
导出
摘要 研究晶界工程处理过程中的冷轧变形量和再结晶退火对白铜B10合金晶界特征分布的影响,采用电子背散射衍射(EBSD)技术表征分析晶界网络的变化。结果表明:白铜B10合金经冷轧7%后在800℃退火10 min可使低ΣCSL(Coincidence site lattice,Σ≤29)晶界比例提高到75%以上,同时形成尺寸较大的"互有Σ3n取向关系晶粒的团簇"显微组织。当变形量小于7%时,经800℃退火后没有完全再结晶;当变形量大于7%时,低ΣCSL晶界比例和平均晶粒团簇的尺寸随冷轧变形量的增加而下降。 The effects of cold rolling deformation and annealing on the grain boundary character distribution (GBCD) during grain boundary engineering (GBE) treatment were investigated by electron backscatter diffraction (EBSD) in cupronickel B10 alloy. The results show that the proportion of low-Σ CSL (Coincidence site lattice, Σ≤29) grain boundaries increase to more than 75% by 7% cold rolling and subsequent annealing at 800 ℃. In this case, the grain boundary network (GBN) is featured by the formation of highly twinned large size grain-clusters produced by multiple twinning during recrystallization. When the cold rolling deformation amount is less than 7%, the 800℃annealing can not induce perfect recrystallization. The perfect recrystallization occurs when the deformation amount is more than 7%, and the proportion of low-ΣCSL grain boundaries and the average size of grain-clusters decrease with the increase of the cold rolling reduction ratio.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第8期2176-2181,共6页 The Chinese Journal of Nonferrous Metals
基金 国家自然科学基金项目(50974148) 上海市重点学科建设项目(S30107) 国家自然科学基金重点项目(51131008)
关键词 晶界工程 晶界特征分布 晶粒团簇 白铜合金 grain boundary engineering grain boundary distribution character grain-cluster cupronickel alloy
  • 相关文献

参考文献18

  • 1KRONBERG M L, WILSON F H. Secondary recrystallization in copper[J]. Trans AIME, 1949, 185(1): 501-514.
  • 2KURBAN M, ERB U, AUST K T. A grain boundary characterization study of boron segregation and carbide precipitation in alloy 304 austenitie stainless steel[J]. Scr Mater, 2006, 54(6): 1053-1058.
  • 3LIN P, PALUMBO G, ERB U, AUST K T. Influence of gain boundary character distribution on sensitization and intergranular corrosion of alloy 600[J]. Scr Metall Mater, 1995, 33(9): 1387-1392.
  • 4WATANABE T, TSUREKAWA S, KOBAYASHI S, YAMAURA S I. Structure-dependent grain boundary deformation and fracture at high temperatures[J]. Mater Sci Eng A, 2005, 420/411 140-147.
  • 5ALEXANDREANU B, WAS G S. The role of stress in the efficacy of coincident site lattice boundaries in improving creep and stress corrosion cracking[J]. Scr Mater, 2006, 54(6): 1047-1052.
  • 6WATANABE T. Approach to grain boundary design for strong and ductile polycrystals[J]. Res Mechanica: International Journal of Structural Mechanics and Materials Science, 1984, 11(1): 47-84.
  • 7PALUMBO G, ERB U. Enhancing the operating life and performance of lead-acid batteries via grain-boundary engineering[J]. MRS Bulletin, 1999, 24(11): 27-32.
  • 8WEST E A, WAS G S. IGSCC of grain boundary engineered 316L and 690 in supercritical water[J]. Journal of Nuclear Materials, 2009, 392(2): 264-271.
  • 9RANDLE V, OWEN G. Mechanisms of grain boundary engineering[J]. Acta Materialia, 2006, 54(7): 1777-1783.
  • 10李文生,王智平,路阳,徐建林,杨德寿.高强铜基合金材料的研究与应用现状[J].有色金属,2002,54(2):30-34. 被引量:32

二级参考文献74

共引文献53

同被引文献77

引证文献11

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部