期刊文献+

Isotopic Compositions of Sulfur in the Jinshachang Lead–Zinc Deposit, Yunnan, China, and its Implication on the Formation of Sulfur-Bearing Minerals 被引量:8

Isotopic Compositions of Sulfur in the Jinshachang Lead–Zinc Deposit, Yunnan, China, and its Implication on the Formation of Sulfur-Bearing Minerals
下载PDF
导出
摘要 The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium. The Jinshachang lead-zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan-Yunnan-Guizhou (SYG) Pb-Zn-Ag multi- metal mineralization area in China. Sulfides minerals including sphalerite, galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite, quartz, and barite, making this deposit distinct from most lead-zinc deposits in the SYG. This deposit is controlled by tectonic structures, and most mineralization is located along or near faults zones. Emeishan basalts near the ore district might have contributed to the formation of orebodies. The j34S values of sphalerite, galena, pyrite and barite were estimated to be 3.6‰-13.4‰, 3.7‰-9.0‰, -6.4‰ to 29.2‰ and 32.1‰34.7‰, respectively. In view of the similar δ34S values of barite and sulfates being from the Cambrian strata, the sulfur of barite was likely derived from the Cambrian strata. The homogenization temperatures (T ≈ 134--383℃) of fluid inclusions were not suitable for reducing bacteria, therefore, the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district. Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur, it was not the main mechanism. Considering other aspects, it can be suggested that sulfur of sulfides should have been derived from magmatic activities. The δ34S values of sphalerite were found to be higher than those of coexisting galena. The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions, suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.
出处 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第5期1355-1369,共15页 地质学报(英文版)
基金 granted by the Key Research Program of the Chinese Academy of Sciences (KZCX2-YW-Q04-05) a Special Research Fund of the SKLOG, IGCAS (KCZX20090103)
关键词 sulfur isotopic composition thermochemical sulfate reduction homogenization temperature equilibrium temperature Jinshachang lead-zinc deposit sulfur isotopic composition, thermochemical sulfate reduction, homogenization temperature, equilibrium temperature, Jinshachang lead-zinc deposit
  • 相关文献

参考文献6

二级参考文献85

共引文献286

同被引文献150

引证文献8

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部