摘要
For its biocompatibility and biodegradability, chitosan has had considerable atten- tion for biomedical applications in recent years. In this paper, polymerization of poly (ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto chitosan membrane surface through argon plasma-induced graft polymerization. The surface properties after modification were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The results indicated that PEGMA can be grafted successfully onto chitosan membrane surface. The surface hydrophilicity and free energy were improved and the surface roughness increased after modification. The adhesion of a human corneal epithelial cell (HCEC) on chitosan membrane surface was enhanced due to improvement of surface free energy and roughness.
For its biocompatibility and biodegradability, chitosan has had considerable atten- tion for biomedical applications in recent years. In this paper, polymerization of poly (ethylene glycol) methyl ether methacrylate (PEGMA) was grafted onto chitosan membrane surface through argon plasma-induced graft polymerization. The surface properties after modification were characterized by contact angle measurement, X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), respectively. The results indicated that PEGMA can be grafted successfully onto chitosan membrane surface. The surface hydrophilicity and free energy were improved and the surface roughness increased after modification. The adhesion of a human corneal epithelial cell (HCEC) on chitosan membrane surface was enhanced due to improvement of surface free energy and roughness.
基金
supported by National Basic Research Program of China (No. 2012CB619100), National High Technology Research and Development Program of China (No. 2011AA030105)