期刊文献+

基于代价敏感的AdaBoost算法改进 被引量:4

IMPROVING ADABOOST ALGORITHM BASED ON COST-SENSITIVE
下载PDF
导出
摘要 针对传统的AdaBoost算法只关注分类错误率最小的问题,在分析传统的AdaBoost算法实质基础上,提出一种基于代价敏感的改进AdaBoost算法。首先在训练基分类器阶段,对于数据集上的不同类别样本根据其错分后造成的损失大小不同来更新样本权值,使算法由关注分类错误率最小转而关注分类代价最小。然后,在组合分类器输出时采用预测概率加权方法来取代传统AdaBoost算法采用的预测类别加权的方法。最后通过实验验证了改进算法的有效性。 In view of the problem that traditional AdaBoost algorithm only concerns the issue of classification error rate minimum, based on analysing the essence of traditional AdaBoost algorithm, an improved AdaBoost algorithm based on cost-sensitive is proposed in this paper. First, in the phase of training the base classifier, for samples of different categories in date set, the value of the sample is updated according to the loss degree of the sample caused by being erroneously classified to other category, this makes the algorithm turn to concern the classification cost minimum but not the classification error rate minimum. Secondly, when the composite classifiers are outputing, the predicted probability weighting method is adopted instead of the predicted category weighting method used by traditional AdaBoost algorithm. Final experiment proves the effectiveness of the improved algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第10期123-125,138,共4页 Computer Applications and Software
基金 山东省自然科学基金项目(ZR2009GL001)
关键词 ADABOOST算法 权重更新 集成学习 代价敏感 AdaBoost algorithm Weight update Ensemble learning Cost-sensitive
  • 相关文献

参考文献10

  • 1Schapire R E. The strength of weak leam ability [ J ]. Machine Learning, 1990,5 (2) : 197 - 227.
  • 2Schapire R E, Singer Y. Improved boosting algorithms using confidence- rated predictions[ J]. Machine Learning, 1999,37 ( 3 ) :297 - 336.
  • 3Viola P,Jones M J. Robust Real-Time Face Detection [ J]. Internation- al Journal of Computer Vision,2004,57(2) :137 - 154..
  • 4武勃,黄畅,艾海舟,劳世竑.基于连续Adaboost算法的多视角人脸检测[J].计算机研究与发展,2005,42(9):1612-1621. 被引量:66
  • 5付忠良.分类器线性组合的有效性和最佳组合问题的研究[J].计算机研究与发展,2009,46(7):1206-1216. 被引量:29
  • 6Zadrozny B, Langford J, Abe N. Cost-sensitive learning by cost-propor- tionate example weighting[ C ]//Proceedings of the 3th IEEE Interna- tional Conference on Data Mining. Washington D. C. , USA: IEEE, 2003:435 - 442.
  • 7Ling C X, Sheng V S, Yang Q. Test strategies for cost-sensitive decision trees[ C ]. IEEE Transactions on Knowledge and Data Engineering, 2006,18 (8) : 1055 - 1067.
  • 8Chai X, Deng L, Yang Q, et al. Test-cost sensitive Naive Bayes classification[ C]//Proceedings of the 4th IEEE International Conference on Data Mining. Washington D. C. , USA : IEEE ,2004 : 1 - 58.
  • 9Newman D J, Hettich S, Blake C L, et al. UCI Repository of machine learning databases [ DB/OL ]. Irvine, CA : University of California, Department of Information and Computer Science, 1998. http ://www. ics. uci. edu/-mlearn/MLRepository, html.
  • 10李文辉,倪洪印.一种改进的Adaboost训练算法[J].吉林大学学报(理学版),2011,49(3):498-504. 被引量:23

二级参考文献38

共引文献110

同被引文献36

  • 1万毅斌,王绍宇,秦彦霞.基于代价敏感加权支持向量机的员工离职分类预测[J].智能计算机与应用,2021,11(12):43-46. 被引量:2
  • 2蒋国瑞,司学峰.基于代价敏感SVM的电信客户流失预测研究[J].计算机应用研究,2009,26(2):521-523. 被引量:21
  • 3杨晓伟,杨祖元,余舒.支持向量机在鼻咽癌患者5年生存状态预测中的应用[J].计算机应用与软件,2007,24(6):17-19. 被引量:1
  • 4Han J,Kamber M.Data mining:concepts and techniques[M].San Francisco CA:Morgan Kanfnann,2001.
  • 5Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70:489-501.
  • 6Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:a new learning scheme of feedforward neural networks[C]//Proceedings of International Joint Conference on Neural Networks,2004,25-29.
  • 7Huang G B,Wang D H,Lan Y.Extreme Learning Machines:A Survey[J].International Journal of Machine Learning and Cybernetics,2011,2(2):107-122.
  • 8Huang G B,Ding X J,Zhou H M.Optimization method based extreme learning machine for classification[J].Neurocomputing,2010,74:155-163.
  • 9Wang Y G,Cao F L,Yuan Y B.A study on effectiveness of extreme learning machine[J].Neurocomputing,2011,74:2483-2490.
  • 10Huang G B,Wang D H.Advances in Extreme Learning Machine[J].Neurocompution,2013,102(1-2).

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部