期刊文献+

多目标进化算法中基于聚集距离调整的分布性保持方法 被引量:1

CROWDING DISTANCE ADJUSTMENT-BASED DISTRIBUTION PROPERTY MAINTENANCE STRATEGY IN MOEAS
下载PDF
导出
摘要 在经典的非支配排序遗传算法中,基于聚集距离的种群维护策略并不能很好地保持解集的分布性。提出一种改进的基于聚集距离调整的分布性维护策略,根据邻近个体的聚集距离大小关系,保留分布较好的个体。与经典算法NSGA-Ⅱ,PESA-Ⅱ和小生境方法进行比较,实验结果表明,提出的分布性维护策略能较大程度提高分布性,并保持较好的收敛性。 In classical non-dominated sorting genetic algorithm, population maintenance strategies based on crowding distance can not well maintain the distribution property of its solutions. We propose an improved distribution property maintenance strategy. It is based on crowding distance adjustment and reserves the well-distributed individual solutions according to the size relation of the crowing distance of adjacent indi- viduals. Compared with classical NSGA- Ⅱ, PESA- Ⅱ and NICHE, the experimental results demonstrate that the proposed distribution proper- ty maintenance strategy can improve the distribution property to a greater extent and keep better convergence at the same time.
作者 蒲骁旻
出处 《计算机应用与软件》 CSCD 北大核心 2013年第10期317-321,共5页 Computer Applications and Software
关键词 多目标进化算法 聚集距离 分布性维护 PARETO最优解 Multi-objective evolutionary algorithm(MOEA) Crowding distance Distribution property maintenance Pareto optimal solu- tion
  • 相关文献

参考文献13

  • 1Schaffer J. Multi-objective optimization with vector evaluated genetic al- gorithms [ C ]//Proc of the 1 st International Conference on Genetic Algo- rithms. [ S. l. ] :Lawrence Erlbaum, 1985 : 93 - 100.
  • 2Zitzler E, Thiele L. Multi-objective evolutionary algorithms:A compara- tive case study and the strength Pareto approach [ J ]. IEEE Transactions Evolutionary Computation, 1999,3 (4) :257 - 271.
  • 3Zitzler E, Laumanns M, Thiele L. SPEA2 : Improving the strength Pareto evolutionary algorithm,TIK2Report103 [ R]. 2001.
  • 4Srinivas N, Deb K. Multi-objective optimization using non-dominated sor- ting genetic algorithms[ J] : Evolutionary Computation, 1994,2 ( 3 ) : 221 - 248.
  • 5Deb K, Agrawal S, Pmatb A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objeetive optimization ; NSGA Ⅱ , KanGAL- Report200001 [ R ]. Indian Institute of Technology, Kanpur, India, 2000.
  • 6Knowles J, Come D. Properties of an adaptive archiving algorithm for storing non-dominated vectors [ J ]. IEEE Transactions on Evolutionary Computation, 2003, 7(2): 100- 116.
  • 7Come D W, Knowles J D, Oates M J. The Pareto envelope-based selection algorithm of multi-objective optimization[ C ]//Proceedings of the Parallel Problem Solving from Nature VI Conference. New York: Springer, 2000.
  • 8Come D W,Jerram N R, Knowles J D,et al. PESA-Ⅱ:Region-bawd selection in evolutionary multi-objective optimization [ C ]//Proceedings of the Genetic and Evolutionary Computation Conference ( GECCO-2001 ). [ s. l. ]:Morgan Kaufmann Publishers,2001:283 -290.
  • 9Deb K, Mohan M, Mishra S. Evaluating the epsilon-domination based multiobjective evolutionary algorithm for a quick computation of Pareto-optimal solutions[J]. Evolutionary Computation, 2005, 13(4): 501 -525.
  • 10Li M Q, Zheng J H, Xiao G X. An efficient multi-objective evolutionary algorithm based on minimum spanning tree[ C ]//Proceeding of Congress on Evolutionary Computation ( CEC' 2008). Hong Kong: IEEE, 2008 : 617 -624.

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部