期刊文献+

视觉跟踪算法的研究进展

A Review of Visual Tracking Algorithms
下载PDF
导出
摘要 目前,IT产业和高新技术领域的前沿之一是计算机视觉,而视觉跟踪算法是当前计算机视觉领域的研究热点。阐述视觉跟踪算法的国内外现状以及算法的分类,包括基于定位方法的分类、基于特征的分类、基于研究方法的分类,并探讨视觉跟踪算法的未来研究方向。 Currently, the scope of computer vision is one of cutting-edge researches in IT industry and the hi-tech field, while the visual tracking algorithm is a hot spot in the field of computer vision. This paper expounds the status quo of visual tracking algorithm and its location-based, feature-based, and method-based classification both in China and abroad, and also gives an analysis on the research direction in the future.
出处 《石家庄铁路职业技术学院学报》 2013年第3期59-65,共7页 Journal of Shijiazhuang Institute of Railway Technology
基金 河北省教育厅青年基金项目(2011226)
关键词 计算机视觉 视觉跟踪 算法分类 computer vision visual tracking algorithms classification
  • 相关文献

参考文献2

二级参考文献26

  • 1Horn BK, Schunk BG. Determining optical flow. Artificial Intelligence, 1981,17(1-3): 185-203.
  • 2Smith SM, Brady JM. ASSET-2: Real-Time motion segmentation and shape tracking. IEEE Trans. on PAMI, 1995,17(8):814-820.
  • 3Neff A, Colonnese S, Russo G, Talone P. Automatic moving object and background separation. Signal Processing, 1998,66(2):219-232.
  • 4Meier T, Ngan KN. Automatic segmentation of moving objects for video object plane generation. IEEE Trans. on Circuits and Systems for Video Technology, 1998,8(5):525-538.
  • 5Jolly MPD, Lakshmanan S, Jain AK. Vehicle segmentation and classification using deformable templates. IEEE Trans. on PAMI,1996,18(3):293-308.
  • 6Ridder C, Munkelt O, Kirchner H. Adaptive background estimation and foreground detection using Kalman-filter. In: Proc. of the Int'l Conf. on Recent Advances in Mechatronics, ICRAM'95. UNESCO Chair on Mechatronics, 1995. 193-199.
  • 7Friedman N, Russell S. Image segmentation in video sequences: A probabilistic approach. In: Proc. of the 13th Conf. on Uncertainty in Artificial Intelligence (UAI). San Francisco, 1997.
  • 8Stauffer C, Grimson WEL. Adaptive background mixture models for real-time tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Vol 2. 1999. 246-252.
  • 9KaewTraKulPong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In:The 2rid European Workshop on Advanced Video-based Surveillance Systems. Kingston upon Thames, 2001.
  • 10Elgammal A, Harwood D, Davis L. Non-Parametric model for background subtraction. In: Proc. of the 6th European Conf. on Computer Vision. Dublin Ireland, 2000.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部