Nonlinear control and synchronization of a class of nonlinear coupled dynamical systems
Nonlinear control and synchronization of a class of nonlinear coupled dynamical systems
摘要
In this paper, a control problem for a class of nonlinear coupled dynamical systems is proposed and a continuous nonlinear feedback control law is designed using direct Lyapunov method to solve the proposed control problem. Moreover, synchronization problem for a special case of this class nonlinear coupled dynamical systems is concerned. Numerical examples show the effectiveness and advantage of the designed continuous nonlinear control law and derived synchronization result.
In this paper, a control problem for a class of nonlinear coupled dynamical systems is proposed and a continuous nonlinear feedback control law is designed using direct Lyapunov method to solve the proposed control problem. Moreover, synchronization problem for a special case of this class nonlinear coupled dynamical systems is concerned. Numerical examples show the effectiveness and advantage of the designed continuous nonlinear control law and derived synchronization result.
参考文献29
-
1A. L. Fradkov, B. Andrievsky. Control of wave motion in the chain of pendulums. Proceedings of the 17th IFAC World Congress on Automatic Control. Seoul, 2008:3136 - 3141.
-
2A. Y. Pogromsky, A. L. Fradkov, D. J. Hill. Passivity based damping of power system oscillations. Proceedings of the 35th IEEE Conference on Decision and Control. New York: IEEE, 1996:3876 - 3881.
-
3E. L. Aero, A. L. Fradkov, B. Andrievsky, et al. Dynamics and nonlinear control of oscillations in a complex crystalline lattice. Proceedings of the 16th 1FAC World Congress. Prague, 2005:793 - 793.
-
4E. L. Aero, A. L. Fradkov, B. Andrievsky, et al. Dynamics and control of oscillations in a complex crystalline lattice. Physics Letters A, 2006, 353(1): 24 - 29.
-
5B. R. Andrievsky, K. B. Boykov. Numerical and laboratory experiments with controlled coupled pendulums. Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems. Oxford: Pergamon-Elsevier Science Ltd., 2001:824 - 829.
-
6B. R. Andrievsky, K. B. Boykov, A. L. Fradkov. Numerical and experimental excitability analysis of multi-pendulum mechatronics system. Proceedings of the 15th IFAC Worm Congress. Barcelona, 2002:1475 - 1475.
-
7B. R. Andrievsky, A. L. Fradkov. Feedback resonance in single and coupled 1-DOF oscillators. International Journal of Bifurcation andChaos, 1999, 9( 10): 2047 - 2058.
-
8B. R. Andrievsky, A. L. Fradkov, V. A. Konoplev, et al. Control, state estimation and laboratory experiments with oscillatory mechanical system. Proceedings qf the 4th IFAC S3wqosium Nonlinear Control Systems. Twente, Holland, 1998:761 -764.
-
9A. L. Fradkov. Cybernetical Physics: )'om Control qf Chaox to Quantum Contpvl. Berlin: Springer, 2007.
-
10O. M. Braun, Y. S. Kivshar. The FrenkeI-Kontolvva Model. Berlin: Springer, 2004.
-
1Generation of Nonlinear Control Functions for Studying Controland Synchronization of Chaos[J].Annual Report of China Institute of Atomic Energy,1997(0):41-42.
-
2李艳兵,魏作余.从中学物理实验探析高校物理实验教学[J].品牌,2014(12):278-278.
-
3Khac Duc Do,Dang Hoe Nguyen,Thanh Binh Nguyen.Nonlinear Control of Magnetic Bearings[J].Journal of Measurement Science and Instrumentation,2010,1(1):10-16. 被引量:1
-
4潘春萍,管欣,卢颖,梁建民.The nonlinear control of simulator of hexapod parallel mechanism[J].Journal of Harbin Institute of Technology(New Series),2010,17(3):393-397.
-
5闫华,魏平,肖先赐.Tangent response in coupled dynamical systems[J].Chinese Physics B,2010,19(9):217-225.
-
6JIANG Zhong-Ping,LIU Teng-Fei.Quantized Nonlinear Control-A Survey[J].自动化学报,2013,39(11):1820-1830. 被引量:11
-
7阿继凯.大学物理实验教学中存在的问题及解决建议[J].科技信息,2009(22). 被引量:2
-
8郭立群,赵英.迈克尔逊干涉仪实验中的三个问题[J].大学物理实验,2002,15(2):40-41. 被引量:8
-
9SREEKUMAR M.,SINGAPERUMAL M.,NAGARAJAN T.,ZOPPI M.,MOLFINO R..Review:Recent advances in nonlinear control technologies for shape memory alloy actuators[J].Journal of Zhejiang University-Science A(Applied Physics & Engineering),2007,8(5):818-829. 被引量:2
-
10LI Xin.Modified Projective Synchronization of a New Hyperchaotic System via Nonlinear Control[J].Communications in Theoretical Physics,2009,52(8):274-278. 被引量:1