期刊文献+

吲哚菁绿纳米颗粒在癌症诊断和治疗中的应用 被引量:11

Application of Indocyanine Green Nanoparticles in Diagnosis and Treatment of Cancer
下载PDF
导出
摘要 吲哚菁绿(ICG)是一种传统的临床近红外(NIR)荧光染料,同时能够高效吸收激光用于光热和光动力治疗.但是ICG在水溶液中的不稳定性及在体内的快速清除限制了它的应用.纳米技术的快速发展为ICG的进一步开发应用提供了新材料和新思路.本文主要介绍ICG纳米颗粒在肿瘤近红外诊断及光热和光动力治疗领域研究的最新进展. Indocyanine green (ICG) is a conventional near-infrared (NIR) dye that can be used in clinical fluorescence imaging, and it is also an effective light absorber for laser-mediated photothermal or photodynamic therapy. However, the ICG is still limited by its unstable properties in aqueous media and quick clearance from the body. The ICG-loaded nanoparticle has provided the versatile assembly tools for further development and application of the ICG. Herein, we review the application of ICG nanoparticles in NIR diagnosis and photothermal/photodynamic therapy of cancer.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2013年第10期971-976,共6页 Progress In Biochemistry and Biophysics
基金 国家自然科学基金(81071249 81171446 20905050) 广东省引进"创新科研团队"(低成本健康技术创新团队) 深圳科学技术重点项目(CXB201005250029A JC201005260247A) 中国科学院百人计划资助项目(SY29064)~~
关键词 吲哚菁绿纳米探针 光热治疗 光动力治疗 联合治疗 肿瘤 ICG nanoprobe, molecular imaging, photothermal therapy, photodynamic therapy, combination therapy, cancer
  • 相关文献

参考文献39

  • 1Yaseen M A, Yu J, Jung B, et ol. Biodistribution of encapsulated indocyaninegreen in healthy mice. Mol Pharm, 2009, 6 (5): 1321-1332.
  • 2Weigand R, Rotermund F, Penzkofer A. Aggregation dependentabsorption reduction of indocyanine green. Phys Chem, 1997, 101(42): 7729 7734.
  • 3Intes X, Ripoll J, Chen Y, et ol. In vivo continuous-wave optical breast imaging enhanced with indocyanine Green. Med Phys, 2003, 30(6): 1039-1047.
  • 4Zheng M B, Gong P, Jia D X, et ol. PLGA-Lecithin-PEG core-shell nanoparticles for cancer targeted therapy. Nano Life, 2012, 2(1): 1250002.
  • 5Kim T H, Chen Y, Mount C W, et d. Evaluation of temperature-sensitive, indocyanine green-encapsulating micelles for noninvasive near-infrared tumor imaging. Pharm Res, 2010, 27(9): 1900-1913.
  • 6Miki K, Oride K, Inoue S, et al. Ring-opening metathesis polymerization-based synthesis of polymeric nanoparticles for enhanced tumor imaging in vivo: Synergistic effect of folate-reeeptor targeting and PEGylation. Biomaterials, 2010, 31(5): 934-942.
  • 7Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic acceumulation of proteins and the antitumor agent amancs. Cancer Res, 1986, 46(12): 6387 6392.
  • 8Davis M E, Chen Z G, Shin D M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 2008, 7(9): 771 782.
  • 9SotLriS J S, Lee C H, Cheng S H, et d. Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials, 2010, 31(21): 5564-5574.
  • 10Altinolu E I, Russin T J, Kaiser J M, et ol. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano, 2008, 2 (10): 2075-2084.

同被引文献63

  • 1杨秉芬,刘志敏.乙肝核心抗原作为免疫载体蛋白的研究进展[J].生物技术通讯,2005,16(2):180-182. 被引量:3
  • 2杨玲,李连弟,陈育德,D.M.Parkin.中国乳腺癌发病死亡趋势的估计与预测[J].中华肿瘤杂志,2006,28(6):438-440. 被引量:278
  • 3VincentA, HermanJ, SchulickR, et al. Pancreatic cancer[J]. Lancet, 2011, 378(9791):607-620. DOI:10.1016/S0140-6736(10)62307-0.
  • 4Garrido-LagunaI, HidalgoM. Pancreatic cancer: from state-of-the-art treatments to promising novel therapies[J]. Nat Rev Clin Oncol, 2015, 12(6):319-334. DOI:10.1038/nrclinonc.2015.53.
  • 5ShirasuN, NamSO, KurokiM. Tumor-targeted photodynamic therapy[J]. Anticancer Res, 2013, 33(7):2823-2831. DOI:10.1002/lsm.20345.
  • 6LiuY, ZhaoYM, AkersW, et al. First in-human intraoperative imaging of HCC using the fluorescence goggle system and transarterial delivery of near-infrared fluorescent imaging agent: a pilot study[J]. Transl Res, 2013, 162(5):324-331. DOI:10.1016/j.trsl.2013.05.002.
  • 7NguyenQT, TsienRY. Fluorescence-guided surgery with live molecular navigation—a new cutting edge[J]. Nat Rev Cancer, 2013, 13(9):653-662. DOI:10.1038/nrc3566.
  • 8MaruyamaT, AkutsuY, SuganamiA, et al. Treatment of near-infrared photodynamic therapy using a liposomally formulated indocyanine green derivative for squamous cell carcinoma[J]. PLoS One, 2015, 10(4):e0122849. DOI:10.1371/journal.pone.0122849.
  • 9ShemeshCS, HardyCW, YuDS, et al. Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells[J]. Photodiagnosis Photodyn Ther, 2014, 11(2):193-203. DOI:10.1016/j.pdpdt.2014.02.001.
  • 10LiuY, XuM, ChenQ, et al. Gold nanorods/mesoporous silica-based nanocomposite as theranostic agents for targeting near-infrared imaging and photothermal therapy induced with laser[J]. Int J Nanomedicine, 2015, 10:4747-4761. DOI:10.2147/IJN.S82940.[12]LiL, LiuY, HaoP, et al. PEDOT nanocomposites mediated dual-modal photodynamic and photothermal targeted sterilization in both NIR Ⅰ and Ⅱ window[J]. Biomaterials, 2015, 41:132-140. DOI:10.1016/j.biomaterials.2014.10.075.

引证文献11

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部