期刊文献+

基于肿瘤异常结构的纳米药物设计 被引量:2

Nanomedicine Design Based on Abnormal Structure in Tumor
下载PDF
导出
摘要 肿瘤组织的血液供给在时间和空间上存在的非均质性、血管的高渗性、淋巴排出功能的低效性共同形成肿瘤微环境,阻碍治疗药物有效地运输到肿瘤,从而影响其疗效.与传统药物相比,纳米药物能优先递送到肿瘤,并具有多药载药与靶向运输等功能.但肿瘤中特有生理屏障的存在阻碍了纳米药物以有效浓度均匀地运输到肿瘤组织.一些美国食品药品管理局批准的纳米药物疗效并不显著,可能与这些生理屏障的阻碍有关.本文概述了肿瘤治疗时药物需跨过的生理屏障,并总结了克服这些生理屏障的方法,探讨了纳米药物研发时针对肿瘤异常结构优化药物递送需考虑的因素. In tumors, the blood supply is anisotropic spatially and temporally, meanwhile the vascular permeability is high and the ability of fluid flowing from lymphangion is poor. These factors work together to create tumor microenvironment and block therapeutic agents from uniformly delivering into tumors. Compared to conventional medicine, nanomedicine has the potential to enable the preferential delivery of drugs to tumor, deliver more than one therapeutic agent, and bind drugs to target cancer cells specially. But the specific physiological barriers presented in tumor hinder efficient and uniform delivery of nanoparticles into tumors. This may be account for moderate survival benefit obtained from FDA-approved nanomedicines. Here, we summarize these barriers existing in cancer therapy and researches aiming at conquering these barriers. Finally, we discuss factors in nanoparticles design to improve delivering efficiency for tumor.
出处 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2013年第10期990-997,共8页 Progress In Biochemistry and Biophysics
关键词 纳米药物 肿瘤治疗 生理屏障 nanomedicine, cancer therapy, physiological barriers
  • 相关文献

参考文献40

  • 1Allen P M, Liu W, Chauhan V P, eta/. InAs (ZnCdS) quantum dots optimized for biological imaging in the near-infrared. J Amer Chem Soc, 2009, 132(2): 470-471.
  • 2Zhang L, Gu F X, Chan J M, et ol. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharm Ther, 2007, 83(5): 761-769.
  • 3Davis M E. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Disc, 2008, 7(9): 771-782.
  • 4Cheng Z, A1 Zaki A, Hui J Z, et ol. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science, 2012, 338(6109): 903-910.
  • 5Boucher Y, Baxter L T, Jain R K. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy. Cancer Res, 1990, 50(15): 4478-4484.
  • 6Jain R K. Transport of molecules in the tumor interstitium: a review. Cancer Res, 1987, 47(12): 3039-3051.
  • 7Vakoc B J, Fuk'umura D, Jain R K, et al. Cancer imaging by optical coherence tomography: preelinical progress and clinical potential. Nat Rev Cancer, 2012, 12(5): 363-368.
  • 8Hobbs S K, Monsky W L, Yuan F, et ol. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proe Natl Acad Sci USA, 1998, 95(8): 4607- 4612.
  • 9Kamoun W S, Chae S S, Lacorre D A, et ol. Simultaneous measurement of RBC velocity, flux, hematoerit and shear rate in vascular networks. Nature Methods, 2010, 7(8): 655-660.
  • 10Hoshida T, Isaka N, Hagendoom J, et ol. Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res, 2006, 66(16): 8065-8075.

同被引文献37

  • 1Kizaka-Kondoh S, Tanaka S, Harada H, et al. The HIF-1-active microenvironment: an environmental target for cancer therapy[J].Adv Drug Deliver Rev, 2009, 61(7/8): 623-632.
  • 2Shmeeda H, Amitay Y, Tzemach D, et al. Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity[J].J Control Release, 2013, 167(3): 265-275.
  • 3Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent zinostatin(smanca)[J].Cancer Res, 1986, 46(12 Pt 1): 6387-6392.
  • 4Maeda H. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects[J].Bioconjugate Chem, 2010, 21(5): 797-802.
  • 5Weidensteiner C, Reichardt W, Shami PJ, et al. Effects of the nitric oxide donor JS-K on the blood-tumor barrier and on orthotopic U87 rat gliomas assessed by MRI[J].Nitric Oxide, 2013, 30(8): 17-25.
  • 6Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application[J].Cancer Sci, 2009, 100(12): 2426-2430.
  • 7Wang W, Sawicki G, Schulz R. Peroxynitrite-induced myocardial injury is mediated through matrix metalloproteinase-2[J].Cardiovasc Res, 2002, 53(1): 165-174.
  • 8Masuyer G, Yates CJ, Sturrock ED, et al. Angiotensin-Ⅰconverting enzyme (ACE): structure, biological roles, and molecular basis for chloride ion dependence[J].Biol Chem, 2014, 395(10): 1135-1149.
  • 9Wang X, Yang C, Zhang Y, et al. Delivery of platinum(Ⅳ) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles[J].Biomaterials, 2014, 35(24): 6439-6453.
  • 10Moraes MS, Costa PE, Batista WL, et al. Endothelium-derived nitric oxide (NO) activates the NO-epidermal growth factor receptor-mediated signaling pathway in bradykinin-stimulated angiogenesis[J].Arch Biochem Biophys, 2014, 558(18): 14-27.

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部