期刊文献+

MicroRNA-129促进骨髓间充质干细胞向心肌分化的实验研究 被引量:2

MicroRNA-129 Promotes Cardiomyogenesis in Bone Marrow Mesenchymal Stem Cells
原文传递
导出
摘要 目的研究microRNA-129(mir-129)对骨髓间充质干细胞(bone marrow mesenchymal stem cells,BM-MSCs)向心肌分化过程中的促进作用及其机制。方法分离培养SD大鼠骨髓间充质干细胞,通过慢病毒转染使细胞获得过表达基因分为4组:对照组(MSCs);慢病毒空转组(Lentiviral vectors+MSCs,Lv-MSCs);mir-129单转染组(mir-129-MSCs);mir-129+糖原合成酶激酶(GSK-3β)双转染组(mir-129+GSK-3β-MSCs)。以10μmol/L浓度的5-氮杂胞苷(5-Aza)诱导MSCs向心肌细胞分化后,分别以第1 d、5 d、10 d、15 d和20 d为时间点,采用realtime-PCR检测GATA-4、NKx2.5、MEF-2C的mRNA水平,以第10 d、15 d、20 d为时间点,用蛋白质印迹法(Western blotting)检测肌钙蛋白I(cTnI)、结蛋白(Desmin)、GSK-3β以及磷酸化β-catenin与非磷酸化β-catenin的表达量。结果与对照组比较,随着研究时间点的推移,mir-129单转染组反映心肌分化的相关标记物基因和蛋白水平明显升高,GSK-3β的表达水平则显著降低,非磷酸化β-catenin/磷酸化β-catenin比值升高;当MSCs同时过表达mir-129和GSK-3β时,相关的心肌标记物基因和蛋白均低于mir-129单转染组,非磷酸化β-catenin/磷酸化β-catenin比值明显降低。结论过表达mir-129能够促进MSCs向心肌细胞分化,可能的机制是通过抑制GSK-3β的生成,从而削弱了对β-catenin的磷酸化抑制,后者游离入核开启调控干细胞下游的心肌分化途径。 Abstract: Objective To explore the induction of cardiomyogenesis of microRNA-129 (mir-129) in rat bone marrow mesenchymal stem cells (BM-MSCs) and its mechanism. Methods BM-MSCs were isolated from Sprague-Dawley rats and cultured in vitro. Overexpression of mir- 129 or both mir- 129 and glycogen synthase kinase-313 (GSK-313 ) in BM-MSCs was produced with a lentiviral vector system. All the BM-MSCs were divided into four groups: control group (MSCs), Lentiviral vectors + MSCs group (Lv-MSCs), mir-129 transfection group (mir-129-MSCs), and mir-129 + GSK-313 double transfection group (mir- 129 + GSK-313-MSCs ). Five-Azacytidine ( 5 -Aza) ( 10 ~tmol/L ) was used to induce BM-MSCs differentiation into cardiomyocytes. On the 1 st, 5 th, 10 th, 15 th and 20 th day after induction, realtime-PCR was performed to detect mRNA levels of GATA-4,Nkx2.5 and MEF-2C. On the 10 th, 15 th and 20 th day after induction,Western blotting was performed to examine expression levels of cTnl, Desmin, GSK-313, phosphorylated 13-catenin and dephosphorylated 13-catenin. Results Compared with the control group, at respective time points, mRNA levels of cardiomyogenic genes and expression levels of cardiomyocyte-related proteins of mir-129 transfection group were significantly elevated, the expression level of GSK-313 was significantly decreased, and the ratio of dephosphorylated/phosphorylated 13-catenin was significantly elevated. When both mir-129 and GSK-3β were overexpressed in BM-MSCs, mRNA levels of cardiomyogenic genes and expression levels of cardiomyocyte-related proteins were significantly lower than those of mir-129 transfection group, and the ratio of dephosphorylated/phosphorylated 13-catenin was significantly decreased. Conclusion Overex- pression of mir-129 can promote cardiomyogenesis of rat BM-MSCs possibly via inhibiting GSK-3β production and thusdecreasing the inhibition of phosphorylation of 13-catenin which then enters the nucleus and activates downstream signaling pathways that regulate cardiomyogenic differentiation of BM-MSCs.
出处 《中国胸心血管外科临床杂志》 CAS 2013年第5期570-576,共7页 Chinese Journal of Clinical Thoracic and Cardiovascular Surgery
基金 上海市教委基金资助项目(11YZ48)~~
关键词 骨髓间充质干细胞 心肌分化 microRNA一129 糖原合成酶激酶 Bone marrow mesenchymal stem cells Myocardial differentiation MicroRNA-129 Glycogensynthase kinase-3β
  • 相关文献

参考文献25

  • 1Gnecchi M, Danieli P, Cervio E. Mesenchymal stem cell therapy for heart disease. Vascul Pharmacol, 2012, 57 ( 1 ) : 48-55.
  • 2Pillai RS. MicroRNA function: multiple mechanisms for a tiny RNA ? RNA, 2005, 11 (12) : 1753-1761.
  • 3Zamore PD, Haley B. Ribo-gnome: the big world of small RNAs. Science, 2005, 309 ( 5740 ) : 1519-1524.
  • 4Fu JD, Rushing SN, Lieu DK, et al. Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes. PLoS One, 2011, 6(11): e27417.
  • 5Sun Q, Zhang Y, Yang G, et al. Transforming growth factor-beta- regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res, 2008, 36 (8) : 2690-2699.
  • 6Townley-Tilson WH, Callis TE, Wang D. MicroRNAs 1, 133, and 206 : critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol, 2010, 42 (8) : 1252- 1255.
  • 7Zhang LL, Liu J J, Liu F, et al. MiR-499 induces cardiac differen- tiation of rat mesenchymal stem cells through wnt/β-catenin signaling pathway. Biochem Biophys Res Commun, 2012, 420 (4) : 875-881.
  • 8Brunt KR, Zhang Y, Mihic A, et al. Role of WNT/β-Catenin sign- aling in rejuvenating myogenic. Am J Pathol, 2012, 181 (6) : 2067- 2078.
  • 9Carthy JM, Garrnaroudi FS, Luo Z, et al. Wnt3a induces myofibro- blast differentiation by upregulating TGF-β signaling through SMAD2 in a β-catenin-dependent manner. PLoS One, 2011, 6 (5) : e19809.
  • 10Blankesteijn WM, van de Schans VA, ter Horst P, et al. The Wnt/ frizzled/GSK-3 beta pathway: a novel therapeutic target for cardiac hypertrophy. Trends Pharmacol Sci, 2008, 29 (4) : 175-180.

二级参考文献40

  • 1[1]Wakitani S, Saito T, Caplan Al. Myogenic cells derived from rat bone matrrow mesenchymal stem cells exposed to 5-azacytidine [J].Muscle Nerve. 1995. 18: 1412-1416.
  • 2[2]Beltrami AP. Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction [ J]. New England Journal Medicine, 2001,344:1750-1757.
  • 3[3]Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart [J]. New England Journal Medicine, 2002, 346:5-15.
  • 4[4]Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999, 284:143-147.
  • 5[5]Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. Journal Clinical Investigation, 1999, 103: 687 - 705.
  • 6[6]Friedenstein AJ, Gorskaja U, Kulagina NN, et al. Fibroblast Precursors in normal and irradiated mouse bematopoietic organs [J]. Exp Hematol, 1976,4:267 -274.
  • 7[7]Wang J, Shum-tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages[ J]. J Thorac Cardiovasc Surg, 2000, 120: 999 - 1006.
  • 8[8]Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart functions [ J ]. Circulation, 1999,100(Suppl Ⅱ) :245 -256.
  • 9Mirotsou M, Zhang Z, Deb A, et al. Secreted frizzled related pro- tein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released parac- fine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A, 2007, 104(5) : 1643-1648.
  • 10Rochais F, Mesbah K, Kelly RG. Signaling pathways controlling second heart field development. Circ Res, 2009, 104 ( 8 ) : 933-942.

共引文献15

同被引文献37

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部