期刊文献+

防边界收缩的无线传感器网络节点轻量级调度算法 被引量:1

Nodes Lightweight Scheduling Algorithm of Preventing Boundary Contraction in Wireless Sensor Network
下载PDF
导出
摘要 针对高密度部署的无线传感器网络边界节点邻居数量低于内部节点而导致休眠概率不均等进而边界收缩的问题,提出了一种轻量级调度算法.根据邻居表中节点的数量以及邻居节点的工作邻居数量判定节点是否处于网络边界,对于边界节点和内部节点采用不同的调度策略,并分别计算得出处于网络边界的节点被n个邻居完全覆盖的概率和边界节点被n个邻居覆盖的面积分数的范围.仿真结果表明,该算法能够有效缓解边界收缩问题,延长网络生命周期. The number of boundary nodes neighbors is less than that of the internal nodes in high- density deployment wireless sensor network, which will lead to unequal probability of sleep and the problem of boundary contraction. To solve the problems, a nodes lightweight scheduling algorithm was proposed to prevent boundary contraction. The number of nodes in neighbor table and the number of neighbor nodes' working neighbors were used to determine whether the node was in the network boundary. For those boundary and internal nodes, different scheduling strategies were used. The probability of nodes covered completely by n neighbors in the network boundary and the range of area fraction of the boundary node covered by n neighbors were calculated, respectively. The simulation results showed that the boundary contraction can be effectively alleviated and the network life cycle can be extended by using the proposed algorithm.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1378-1382,共5页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61170169 61170168)
关键词 无线传感器网络 节点休眠 防边界收缩 边界节点判定 能量 wireless sensor networks (WSN) nodes sleep preventing boundary contraction boundary nodes determine energy
  • 相关文献

参考文献9

  • 1Popa M, Girban G. On the energy constraint in wireless sensor networks [ J ]. Computer Communications, 2003,26 ( 11 ) : 1131 - 1144.
  • 2Sunil K, Kashyap K, Zart B, et al. An energy-aware and intelligent cluster-based event detection scheme in wireless sensor networks [ J ]. International Journal of Sensor Networks ,2008,3 (2) : 123 - 133.
  • 3Saad E M,Awadalla M H, Saleh M A, et al. Adaptive and energy efficient clustering architecture for dynamic sensor networks[ C ]//Soft Computing Applications. Oradea, 2007 : 221 - 225.
  • 4Tian D, Georganas N D. A node scheduling scheme for energy conservation in large wireless sensor networks [ J ]. Mobile Computing,2003,3 ( 2 ) :27 l - 290.
  • 5Mihaela C, Wu J. Energy-efficient coverage problems in wireless ad-hoc sensor networks [ J ]. Computer Communications, 2006,29 (4) :413 - 420.
  • 6Liu C, Wu K, Xiao Y, et al. Random coverage with guaranteed connectivity:joint scheduling for wireless sensor networks[ J ]. IEEE Transactions on Parallel and Distributed System,2006,17 (6) :562 - 575.
  • 7Fan G, Wang R, Huang H, et al. Coverage-guaranteed sensor node deployment strategies for wireless sensor networks [ J ]. Sensors,2010,10 ( 3 ) : 2064 - 2087.
  • 8Hu X M,Zhang J,Yu Y,et al. Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks [ J ]. IEEE Transactions on Evolutionary Computation,2010,14 ( 5 ) :766 - 781.
  • 9Wu K, Gao Y, Li F, et al. Lightweight deployment-aware scheduling for wireless sensor networks[ J ]. Mobile Networks and Application,2005,10 (6) :837 - 852.

同被引文献2

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部