期刊文献+

1995~2010年中国钢铁工业能源消耗影响因素分析 被引量:10

Analysis of Influence Factors on Energy Consumption in Chinese Steel Industry from 1995 to 2010
下载PDF
导出
摘要 基于1995~2010年中国钢铁工业能源消耗及钢产量数据,采用对数平均迪氏分解法对中国钢铁工业能源消耗进行因素分解,包括能源消费结构、吨钢能耗和钢产量.结果显示,1995~2010年中国钢铁工业能源消耗总体上升了35967.00tce,其中钢产量变化对其影响作用最大,贡献率为157.50%,吨钢能耗的影响次之,为-57.53%,能源消费结构对其影响作用最小,仅为0.03%.降低吨钢能耗是降低钢铁工业能源消耗的关键措施,2010年吨钢能耗较1995年降低404.35kgce/t钢,其中钢比系数贡献率为29.37%,工序能耗贡献率高达70.63%. Based on the data of energy consumption and steel production of Chinese steel industry from 1995 -2010, factor decomposition was conducted to analyze energy consumption by using logarithmic mean Divisia index method, including energy consumption structure, energy consumption per ton of crude steels and production. The results showed that energy consumption increased 35 967.00 tce in total from 1995 to 2010. The variety steel production contributed the biggest part of the steel industry energy consumption, accounting for 157.50%. The energy consumption per ton of crude steel took second place on the contribution of the energy consumption, accounting for -57.53%. The last effect part was energy structure, which only contributed for 0. 03% of the energy consumption. Thus, it is a key method to realize energy conservation by decreasing the energy consumption per ton of crude steels. There was a drop of 404.35 kgce/t of the energy consumption per ton of crude steels from 1995 to 2010, among which 29.37% and 70. 63% of the drop came from steel ratio coefficients and process energy consumption, respectively.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1438-1441,共4页 Journal of Northeastern University(Natural Science)
基金 辽宁省教育厅科学技术研究项目(L2012082)
关键词 钢铁工业 能源消耗 对数平均迪氏分解法 钢产量 吨钢能耗 能源消费结构 steel industry energy consumption logarithmic mean Divisia index method steel production energy consumption per ton of crude steel energy consumption structure
  • 相关文献

参考文献3

二级参考文献30

  • 1ZHU De-qing, PAN Jian, HE Ao-ping, et al. Emissions Order of Greenhouse Gas CO2 in Sintering of Iron Ores [J]. Journal of Central South University (Science and Technology), 2005, 36(6): 944 (in Chinese).
  • 2MA Chunbo, Stern D I. China's Changing Energy Intensity Trend: A Decomposition Analysis FJ]. Energy Economics, 2008, 30(3): 1037.
  • 3Hatzigeorgiou E, Polatidis H, Haralamhopoulos D. CO2 Emis sions in Greece for 1990--2002: A Decomposition Analysis and Comparison of Results Using the Arithmetic Mean Divisia In- dex and Logarithmic Mean Divisia Index Techniques [J]. Energy, 2008, 33(3): 492.
  • 4Ediger V S, Huvaz O. Examining the Sectoral Energy Use in Turkish Economy (1980-2000) With the Help of Decomposition Analysis [J], Energy Conversion and Management, 2006,47(6) 732.
  • 5Ang B W, Liu F L. A New Decomposition Method: Perfect in Decomposition and Consistent in Aggregation [J]. Energy, 2001,26(6) 537.
  • 6Hoekstra R, Bergh J V D. Comparing Structural and Index Decomposition Analysis[J]. Energy Economics, 2003, 25(1) 39.
  • 7Kaya Y. Impact of Carbon Dioxide Emission Control on GNP Growth: Interpretation of Proposed Scenarios[R]. Paris: IPCC Energy and Industry Subgroup, Response Strategies Working Group, 1990.
  • 8Ang B W, Choi K H. Decomposition of Aggregated Energy and Gas Emission Intensities for Industry: A Refined Divisia Index Method[J]. Energy, 1997, 18(3): 59.
  • 9Ang B W, Huang H C, Mu A R. Properties and Linkages of Some Index Decomposition Analysis Methods [J]. Energy Policy, 2009, 37(11): 4624.
  • 10IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 2: Energy [M]. Kanagawa: IGES, 2006.

共引文献21

同被引文献175

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部