期刊文献+

行星齿轮系统弯扭耦合振动的增量谐波平衡法 被引量:4

Incremental Harmonic Balance Method for Coupled Bending and Torsional Vibration in Planetary Gear System
下载PDF
导出
摘要 针对行星齿轮传动机构弯扭耦合振动方程是半正定方程而无法直接采用增量谐波平衡法进行求解的问题,引入微小相对位移量来描述行星齿轮系统中各个部件之间的相对运动.采用运动转移矩阵将半正定方程转化为正定方程,同时考虑齿轮啮合刚度时变的非线性特性,采用增量谐波平衡法分析了行星齿轮系统非线性动力学响应.通过与数值求解方法Newmark-β法相对比,计算结果一致,验证了本文方法的正确性及高效性. Incremental harmonic balance (IHB) method could not solve the coupled bending and torsional vibration equation of positive semi-definite in planetary gear transmission mechanism directly, and micro-relative displacement was applied to describe relative motion between the parts in the planetary gear system. The motion transfer matrix was used to transform positive semi- definite equation into positive definite equation. Meanwhile, considering the time-varying nonlinear characteristics of gear mesh stiffness, the IHB method was used to analyze the nonlinear dynamics response in the planetary gear system. The correctness and efficiency of the proposed method were verified by comparison with Newmark-β method.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第10期1451-1455,共5页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2012AA062002) 中央高校基本科研业务费专项资金资助项目(N120403007) 国家自然科学基金资助项目(51005042) 国家重点基础研究发展计划项目(2011CB706504)
关键词 行星齿轮 弯扭耦合振动 增量谐波平衡法 非线性 动力学响应 planetary gear bending-torsional vibration incremental harmonic balance method nonlinear dynamic response
  • 相关文献

参考文献9

  • 1Kahraman A. Planetary gear train dynamics [ J ]. Journal of Mechanical Design, 1994,116:713 - 720.
  • 2Kahraman A. Free torsional vibration characteristics of compound planetary gear sets [ J ]. Mechanism and Machine Theory,2001,36 ( 8 ) :953 - 971.
  • 3Lin J, Parker R G. Analytical characterization of the unique properties of planetary gear free vibration [ J ]. ASME Journal of Vibration and Acoustics, 1999,121 ( 3 ) :316 - 321.
  • 4Bu Z H, Liu G, Wu L Y. Modal analyses of herringbone planetary gear train with journal bearings[J]. Mechanism and Machine Theory ,2012,54:99 - 115.
  • 5Ambarisha V K, Parker R G. Nonlinear dynamics of planetary gears using analytical and finite element models [ J ]. Journal of Sound and Vibration,2007,302 ( 3 ) :577 - 595.
  • 6孙智民,沈允文,李素有.封闭行星齿轮传动系统的动态特性研究[J].机械工程学报,2002,38(2):44-48. 被引量:50
  • 7刘振皓,巫世晶,王晓笋,潜波.基于增量谐波平衡法的复合行星齿轮传动系统非线性动力学[J].振动与冲击,2012,31(3):117-122. 被引量:19
  • 8Sun T, Hu H Y. Nonlinear dynamics of a planetary gear system with multiple clearances[J]. Mechanism and Machine Theory,2003,38:1371 - 1390.
  • 9Kim W, Lee J Y, Chung J T. Dynamic analysis for a planetary gear with time-varying pressure angles and contact ratios[ J]. Journal of Sound and Vibration,2012,331 (4) :883 -901.

二级参考文献11

  • 1杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40-42. 被引量:26
  • 2Kahraman A. Free torsional vbration characteristics of compound planetary gear sets [ J 1- Mechanism and Machine Theory ,2001,36 (8) :953 - 971.
  • 3Kiracofe D R, Parker R G. Structured vibration modes of general compound planetary gear systems [ J ]. ASME Journal of Vibration and Acoustics,2007,129( 1 ) : 1 - 16.
  • 4Dhouib S, Hbaieb R, Chaari F, et al. Free vibration characteristics of compound planetary gear train sets [ J ]. Proceedings of the Institution of Mechanical Engineers Part C- Journal of Mechanical Engineering Science, 2008,222 ( 8 ) : 1389 - 1401.
  • 5Guo Y C, Parker R G. Purely rotational model and vibration modes of compound planetary gears [ J ]. Mechanism and Machine Theory ,2010,45 ( 3 ) :365 - 377.
  • 6A1-Shyyab A, Kahraman A. Non-linear dynamic behaviour of compound planetary gear trains:model formulation and semi- analytical solution [ J ]. Proceedings of the Institution of Mechanical Engineers Part K-Journal of Multi-body Dynamics, 2009,223 (3) : 199 - 210.
  • 7Lau S L, Cheung Y K. Amplitude incremental variational principle for nonlinear vibration of elastic systems刘宁,杨国来.弹管横向碰撞对身管动力响应的影响[J].弹道学报,2010,22(2):67-70. Journal of Applied Mechanics, Transactions ASME, 1981,48 (4) :959 -964.
  • 8Lau S L, Zhang W S. Nonlinear vibrations of piecewise-linear systems by incremental harmonic balance method[ J]. Journal of Appiied Mechanics, Transactions ASME, 1992,59 ( 1 ) : 153 - 160.
  • 9Shen Y J, Yang S P, Liu X D. Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method [ J ]. International Journal of Mechanical Sciences, 2006, 48 ( 11 ) : 1256 - 1263.
  • 10潜波,巫世晶,周广明,李洪武,胡培林,李永军.行星齿轮传动系统动力学特性研究[J].系统仿真学报,2009,21(20):6608-6612. 被引量:9

共引文献67

同被引文献45

  • 1杨绍普,申永军,刘献栋.基于增量谐波平衡法的齿轮系统非线性动力学[J].振动与冲击,2005,24(3):40-42. 被引量:26
  • 2Chu F L, Zhang Z S. Periodic, quasi-periodic and chaoticvibrations of a rub-impact rotor system supported on oil filmbearings [ J ]. International Journal of Engineering Science,1997,35(10/11) :963 -973.
  • 3Legrand M, Pierre C, Cartraud P, et al. Two-dimensionalmodeling of an aircraft engine structural bladed disk-casingmodal interaction[ J]. Journal of Sound and Vibration,2009,319(1/2) :527 -546.
  • 4Bonello P,Hai P M. A receptance harmonic balance techniquefor the computation of the vibration of a whole aero-enginemodel with nonlinear bearings [ J ]. Journal of Sound andVibration,2009,324(1/2) :221 -242.
  • 5Lau S L, Cheung Y K, Wu S Y. A variable parameterincremental method for dynamic instability of linear andnonlinear elastic systems [ J]. Journal of Applied Mechanics,1982,49(4) ;849 -853.
  • 6Lau S L,Cheung Y K,Wu S Y. Incremental harmonic balancemethod with multiple time scales for nonlinear a periodicvibrations [ J ] . Journal of Applied Mechanics, 1983,50 (4):871 -876.
  • 7Huang J L,Su R K L,Lee Y Y,et al. Nonlinear vibration of acurved beam under uniform base harmonic excitation withquadratic and cubic nonlinearities[ J]. Journal of Sound andVibration,2011,330(21) ;5l5l -5164.
  • 8Gorman D J,Singhal R. Steady-state response of a cantileverplate subjected to harmonic displacement excitation at the base[J]. Journal of Sound and Vibration,2009,323 ( 3/4/5 ):1003 -1015.
  • 9Shen Y J, Yang S P, Liu X D. Nonlinear dynamics of a spur gear pair with time-varying stiffness and backlash based on incremental harmonic balance method [ J ]. International Journal of Mechanical Sciences ,2006,48 ( 11 ) : 1256 - 1263.
  • 10Amore P, Aranda A. Improved Lindstedt-Poincare method for the solution of nonlinear problemsU [J]. Journal of Sound and Vibration,2005,283(3/4/5) :1115 - 1136.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部