Primal-dual-pseudo Spline and Its Properties
被引量:1
Primal-dual-pseudo Spline and Its Properties
摘要
In this paper, basing on a new family of masks, namely primal-dual-pseudo spline(PDPS), we present basics of PDPSs which include the regularity, asymptotical analysis and approximation order.
参考文献12
-
1SELENICK I. Smooth wavelet tight frames with zero moments[J]. Appl Com put Harmon Anal, 2000, 10: 163-181.
-
2DAUBECHIES I, HAN Bin, RON Amos, et at. Framelets: MRA-based constructions of wavelet frames[J]. Appl Comput Harmon Anal, 2003, 14(1): 1-46.
-
3DONG Bin, SHEN Zuo-wei. Pseudo-splines, wavelets and framelets[J], Appl Comput Harmon Anal, 2007, 22: 78-104.
-
4DYN N, HORMANN K, SABOM M A, et at. Polynomial reproduction by symmetric subdivision schemes[J]. J Approx Theory, 2008, 155(1): 28-42.
-
5DONG Bin, SIi:Dl, hUU-W"J. .wlll"",r muependence of pseudo-splines[J]. Proc Am Math Soc, 2006, 134: 2685-2694.
-
6DONG Bin, SHEN Zuo-wei. Construction ofbiorthogonal wavelets from pseudo-splines[J]. J Approx Theory, 2006, 138: 211-231.
-
7SHEN Yi, LI Song, MO Qun. Complex wavelets and framelets from pseudo splines[J]. J Fourier Anal Appl, 2010, 16(6): 885-900.
-
8HAN Bin. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules].I]. Adv Comput Math, 2009, 32(2): 209-237.
-
9DONG Bin, DYN N, HORMANN K. Properties of dual pseudo-splines[JJ. Appl Comput Harmon Anal, 2010, 29(1): 104-110.
-
10SHEN Yi,LI Song.Wavelets and framelets from dual pseudo splines[J].Science China Mathematics,2011,54(6):1233-1242. 被引量:3
二级参考文献25
-
1Bin Han.Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules[J]. Advances in Computational Mathematics . 2010 (2)
-
2Amos Ron,Zuowei Shen.Affine systems inL 2 (? d ) II: Dual systems[J]. The Journal of Fourier Analysis and Applications . 1997 (5)
-
3Dong B,Dyn N,Hormann K.Properties of dual pseudo-splines. Applied and Computational Harmonic Analysis .
-
4Han B.On a conjecture about MRA Riesz wavelet bases. Proceedings of the American Mathematical Society . 2006
-
5Han B.Renable functions and cascade algorithms in weighted spaces with H¨older continuous masks. SIAM Journal on Mathematical Analysis . 2008
-
6Han B,Shen Z.Compactly supported symmetric C∞ wavelets with spectral approximation order. SIAM Journal on Mathematical Analysis .
-
7Li S,,Shen Y.Pseudo box splines. Applied and Computational Harmonic Analysis . 2009
-
8M Unser,T Blu.Fractional splines and wavelets. SIAM Review . 2000
-
9I. Selesnick.Smooth wavelet tight frames with zero moments. Applied and Computational Harmonic Analysis . 2001
-
10Q. Mo,Y. Shen,S. Li.A new proof of some polynomial inequalities related to pseudo-splines. Applied and Computational Harmonic Analysis . 2007
共引文献2
-
1袁德辉,沈延峰,李尤发,杨守志.拟α-伪样条及其性质[J].中国科学:数学,2012,42(2):165-180.
-
2江慎铭,江泽涛,张少钦,胡硕.广义伪样条及切波框架[J].中国科学:数学,2016,46(11):1757-1772.
-
1Peijun Chen,Jianguo Huang,Xiaoqun Zhang.A PRIMAL-DUAL FIXED POINT ALGORITHM FOR MULTI-BLOCK CONVEX MINIMIZATION[J].Journal of Computational Mathematics,2016,34(6):723-738. 被引量:1
-
2HUANGHui FEIPu-sheng YUANYuan.A Primal-Dual Infeasible-Interior-Point Algorithm for Multiple Objective Linear Programming Problems[J].Wuhan University Journal of Natural Sciences,2005,10(2):351-354.
-
3林正华,宋岱才,刘庆怀.A NEW FRAMEWORK OF PRIMAL-DUAL INFEASIBLE INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING[J].Numerical Mathematics A Journal of Chinese Universities(English Series),1998,7(2):183-194.
-
4Chun-yan JIANG,Gai-di LI,Zhen WANG.An Approximation Algorithm for the Dynamic Facility Location Problem with Submodular Penalties[J].Acta Mathematicae Applicatae Sinica,2014,30(1):187-192.
-
5Si-ming Huang(Institute of Policy and Management, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China).THE PRIMAL-DUAL POTENTIAL REDUCTION ALGORITHM FOR POSITIVE SEMI-DEFINITE PROGRAMMING[J].Journal of Computational Mathematics,2003,21(3):339-346.
-
6张明望,黄崇超.一类非单调线性互补问题的高阶仿射尺度算法[J].计算数学,2004,26(1):37-46. 被引量:8
-
7MA ShiQian,YANG JunFeng.Applications of gauge duality in robust principal component analysis and semidefinite programming[J].Science China Mathematics,2016,59(8):1579-1592.