期刊文献+

Primal-dual-pseudo Spline and Its Properties 被引量:1

Primal-dual-pseudo Spline and Its Properties
下载PDF
导出
摘要 In this paper, basing on a new family of masks, namely primal-dual-pseudo spline(PDPS), we present basics of PDPSs which include the regularity, asymptotical analysis and approximation order.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 2013年第3期376-382,共7页 数学季刊(英文版)
  • 相关文献

参考文献12

  • 1SELENICK I. Smooth wavelet tight frames with zero moments[J]. Appl Com put Harmon Anal, 2000, 10: 163-181.
  • 2DAUBECHIES I, HAN Bin, RON Amos, et at. Framelets: MRA-based constructions of wavelet frames[J]. Appl Comput Harmon Anal, 2003, 14(1): 1-46.
  • 3DONG Bin, SHEN Zuo-wei. Pseudo-splines, wavelets and framelets[J], Appl Comput Harmon Anal, 2007, 22: 78-104.
  • 4DYN N, HORMANN K, SABOM M A, et at. Polynomial reproduction by symmetric subdivision schemes[J]. J Approx Theory, 2008, 155(1): 28-42.
  • 5DONG Bin, SIi:Dl, hUU-W"J. .wlll"",r muependence of pseudo-splines[J]. Proc Am Math Soc, 2006, 134: 2685-2694.
  • 6DONG Bin, SHEN Zuo-wei. Construction ofbiorthogonal wavelets from pseudo-splines[J]. J Approx Theory, 2006, 138: 211-231.
  • 7SHEN Yi, LI Song, MO Qun. Complex wavelets and framelets from pseudo splines[J]. J Fourier Anal Appl, 2010, 16(6): 885-900.
  • 8HAN Bin. Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules].I]. Adv Comput Math, 2009, 32(2): 209-237.
  • 9DONG Bin, DYN N, HORMANN K. Properties of dual pseudo-splines[JJ. Appl Comput Harmon Anal, 2010, 29(1): 104-110.
  • 10SHEN Yi,LI Song.Wavelets and framelets from dual pseudo splines[J].Science China Mathematics,2011,54(6):1233-1242. 被引量:3

二级参考文献25

  • 1Bin Han.Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules[J]. Advances in Computational Mathematics . 2010 (2)
  • 2Amos Ron,Zuowei Shen.Affine systems inL 2 (? d ) II: Dual systems[J]. The Journal of Fourier Analysis and Applications . 1997 (5)
  • 3Dong B,Dyn N,Hormann K.Properties of dual pseudo-splines. Applied and Computational Harmonic Analysis .
  • 4Han B.On a conjecture about MRA Riesz wavelet bases. Proceedings of the American Mathematical Society . 2006
  • 5Han B.Renable functions and cascade algorithms in weighted spaces with H¨older continuous masks. SIAM Journal on Mathematical Analysis . 2008
  • 6Han B,Shen Z.Compactly supported symmetric C∞ wavelets with spectral approximation order. SIAM Journal on Mathematical Analysis .
  • 7Li S,,Shen Y.Pseudo box splines. Applied and Computational Harmonic Analysis . 2009
  • 8M Unser,T Blu.Fractional splines and wavelets. SIAM Review . 2000
  • 9I. Selesnick.Smooth wavelet tight frames with zero moments. Applied and Computational Harmonic Analysis . 2001
  • 10Q. Mo,Y. Shen,S. Li.A new proof of some polynomial inequalities related to pseudo-splines. Applied and Computational Harmonic Analysis . 2007

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部