期刊文献+

带有免疫的计算机病毒传播模型的稳定性 被引量:4

Stability for Transmission Model of Computer Virus with Vaccination in Networks
下载PDF
导出
摘要 研究了带有免疫的计算机病毒传播模型的稳定性问题。建立具体模型来描述计算机网络中带有免疫的病毒传播模型的动力学特性,得出了模型的无病平衡点和有病平衡点。分别应用Lyapunov第一定理求得无病平衡点渐近稳定的条件和圆盘定理求得有病平衡点渐近稳定的条件。仿真结果表明了所求条件的有效性。 This paper considered stability for transmission model of computer virus with vaccination in networks. Firstly, we got the model of computer virus with vaccination in networks. The disease free equilibrium and the disease equilibrium were first derived from the mathematical model. Then the sufficient conditions of stability for the disease-free equilibrium were obtained by the first Lyapunov method. And the sufficient conditions of stability for the disease equilibrium were given by disc theorem. Simulation results demonstrate the effectiveness of the stability conditions.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第10期110-114,共5页 Periodical of Ocean University of China
基金 国家自然科学基金项目(61074092) 山东省自然科学基金项目(ZR2010FM019)资助
关键词 计算机病毒 传播模型 平衡点 稳定性 computer virus transmission model equilibrium stability
  • 相关文献

参考文献14

  • 1Mishra B K, Pandey S K. Fuzzy epidemic model for the transmis- sion of worms in computer network[J].Nonlinear Analysis: Real World Applications, 2010, 11(5): 4335- 4341.
  • 2Han X, Tan Q. Dynamical behavior of computer virus on Internet[J]. Applied Mathematics and Computation, 2010, 217(6): 2520- 2526.
  • 3Clark J, Leblanc S, Knight S. Compromise through usb-based hardware trojan horse device [J]. Future Generation Computer Systems, 2011, 27(5): 555-563.
  • 4Piqueira J R C, de Vasconeelos A A, Gabriel C E C J., et al. Dy namic models for computer viruses [J]. Computers and security, 2008, 27(7-8): 355-359.
  • 5Mishra B, Jha N. Fixed period of temporary immunity after run of anti-malicious software on computer nodes [J]. Applied Mathemat- ics and Computation, 2007, 190(2): 1207-1212.
  • 6Mukandavirea Z, Chiyaka C, Garira W, et al. Mathematical analy- sis of a sestructured HIV/AIDS model with a discrete time delay [J]. Nonlinear Analysis, 2009, 71(3-4): 1082 -1093.
  • 7Yan X, Zou Y. Optimal and suboptimal quarantine and isolation control in SARS epidemics [J]. Mathematical and Computer Mod- elling, 2008, 47(1 2): 235-245.
  • 8Zhou Y, Ma Z. A discrete epidemic model for SARS transmission and control in China [J]. Mathematical and Computer Modelling, 2004, 40(13): 1491-1506.
  • 9Chiyaka C, Tchuenche J M, Garira W, et al. A mathematical anal-ysis of the effects of control strategieson the transmission dynamics of malaria [J]. Applied Mathematics and Computation, 2008, 195 (2): 641- 662.
  • 10Jia Z W, Tang G Y, Jin Z, et al. Modeling the impact of immi gration on the epidemiology of tuberculosis [J]. Theoretical Pop ulation Biology, 2008, 73(3): 437-448.

同被引文献22

  • 1张丽萍,洪龙,王惠南.一种网络病毒传播的时滞微分方程模型[J].南京邮电大学学报(自然科学版),2007,27(5):78-83. 被引量:5
  • 2Szor P. The Art of Computer Virus Research and Defense[M]. US:Pearson Education, 2005.
  • 3Kephart J O, White S R. Directed-graph epidemiological models of computer viruses[C]// Procceedings of the 1991 IEEE Computer Society Symposium on Research in Security and Privacy. 1991:343-359..
  • 4Chen Jingyun, Yang Xiaofan, Gan Chenquan. Propagation of computer virus under the influnce of external computers: A dynamical model [J]. Journal of Information & Computational Science, 2013,10(16):5275-5282.
  • 5Ren Jianguo, Yang Xiaofan, Yang Luxing, et al. A delayed computer virus propagation model with its dynamics[J]. Chaos Solitons and Fractals, 2012,45(1):74-79.
  • 6Feng Liping, Liao Xiaofeng, Li Huaqing, et al. Hopf bifurcation analysis of a delayed viral infection model in computer networks[J]. Mathematical and Computer Modelling, 2012,56(7-8):167-179.
  • 7Mishra B K, Saini D K. SEIRS epidemic model with delay for transmission of malicious objects in computer network[J]. Applied Mathematics and Computation, 2007,188(2):1476-1482.
  • 8Muroya Y, Enatsu Y, Li Huaxing. Global stability of a delayed SIRS computer virus propagation model[J]. International Journal of Computer Mathematics, 2014,91(3):347-367.
  • 9Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation[M]. Cambridge University Press, 1981.
  • 10冯丽萍,王鸿斌,冯素琴.改进的SIR计算机病毒传播模型[J].计算机应用,2011,31(7):1891-1893. 被引量:37

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部